Title: Geometric mean of matrices

Abstract

Let \mathbb{R}^{+}denote the set of all positive real numbers. For $a, b \in \mathbb{R}^{+}$, the geometric mean is $\sqrt{a b}$. In the extension for two matrices, a good platform is \mathbb{P}_{n}, the set of all $n \times n$ positive definite matrices. The challenge is that the product of two positive definite matrices is not necessarily positive definite and $\sqrt{A B}$, where $A, B \in \mathbb{P}_{n}$, is not an appropriate definition always. Operator theory and differential geometry are two views regarding the extension of the definition of geometric mean from \mathbb{R}^{+}to \mathbb{P}_{n}. Since differential geometry point of view gives us a good understanding of the geometric mean of two positive definite matrices, after reviewing the Riemannian structure of \mathbb{P}_{n}, and the geometric mean in terms of geodesic, we will present some log-majorization inequalities involving geometric mean and some related open problems .

