The Compact Toroidal Hybrid A university scale fusion experiment

Greg Hartwell

Plasma Physics Workshop, SMF-PPD, Universidad National Autónoma México, October 12-14, 2016

CTH Team and Collaborators

• CTH

- Dave Maurer, David Ennis, Jim Hanson, Steve Knowlton, John Dawson, Eric Howell, Jeff Herfindal, Curt Johnson, James Kring, Xinxing Ma, Mihir Pandya, Kevin Ross, Peter Traverso
- Oak Ridge National Lab
 - Mark Cianciosa, Tim Bigelow
- DIII-D
- HSX
- W7-X

Outline

- Fusion Energy and Magnetic Confinement
- Motivation
 - Disruptions
 - Mitigation
- CTH
 - Hardware
 - Operation
- Disruption Studies
 - Vertical Displacement
 - Density Driven
 - Low q
- Future work

What is fusion energy?

- Nuclear process combining light nuclei
- Difference in binding energy released
- Must overcome Coulomb force
- Need a combination of:
 - Temperature
 - Density
 - Time

The goal is to harness fusion energy to produce electricity

Plasma Confinement Schemes

Helical magnetic fields are required for confinement in toroidal devices

- A purely toroidal field will not confine a plasma.
 - ∇B and curvature drifts polarize the plasma
 - $E \times B$ pushes plasma out

Tokamaks use a plasma current to create the helical magnetic field

Stellarators create helical fields with external coils

Toroidal field coils Continuous helical field coils

Modular coils

Differences between a tokamak and a stellarator

Tokamak

- Axisymmetric configuration
- MHD equilibrium requires externally driven toroidal plasma current
- Current driven instabilities lead to disruptions

Stellarator

- Non-axisymmetric configuration
- MHD equilibrium obtained with externally applied magnetic fields
- Current free not susceptible to disruptions

Outline

- Fusion Energy and Magnetic Confinement
- Motivation
 - Disruptions
 - Mitigation
- CTH
 - Hardware
 - Operation
- Disruption Studies
 - Vertical Displacement
 - Density Driven
 - Low q
- Future work

Disruption avoidance and mitigation is essential for future tokamaks

- Disruptions are sudden losses of plasma confinement
- Result in large particle and heat flows on plasma facing components
- Major concern for ITER operation
- Major focus of the US tokamak program
 - Predict
 - Avoid
 - Mitigate

Disruption in the Alcator C-mod tokamak

Present day tokamaks use 3D magnetic fields to improve control and performance

- Small amounts of 3D fields are used for a variety of purposes on present day tokamaks with $B_{3D}/B_0 \sim 10^{-3}$
 - Resistive wall modes, ELM control, error field correction
- Disruptions do not routinely occur in (net) current free stellarators

CTH experiments seek to study the question:
 What is the effect of higher levels of 3D magnetic shaping, B_{3D}/B₀ ~ 10%, on tokamak-like instabilities and disruptions?

The Compact Toroidal Hybrid (CTH) is designed to study the effect of 3D shaping on the MHD stability of a current carrying stellarator

- Torsatron device closed magnetic flux surfaces provided by external coils
- Hybrid plasma current is driven within the 3D equilibrium of a stellarator plasma
- CTH can vary the relative amount of externally applied transform to that generated by internal plasma current

Outline

- Fusion Energy and Magnetic Confinement
- Motivation
 - Disruptions
 - Mitigation
- CTH
 - Hardware
 - Operation
- Disruption Studies
 - Vertical Displacement
 - Density Driven
 - Low q
- Future work

The vacuum vessel is a circularly symmetric torus with port extensions for diagnostic access

- R₀=75cm
- a_{vv}=29cm
- Volume 1.5m³
- No electrical break
- Inconel[®]625
 - Higher resistivity than SS316
 - Lower permeability than SS316
- Conflat style ports
- Pressure 5 x 10⁻⁸ torr

A Helical Coil Frame holds the helical coil to within 0.4mm of its design position

- 10 identical pieces
- Cast in Aluminum
- Trough and mating faces machined to 0.015"
- Total weight 2000kg
- Designed by Tom Brown
 Princeton Plasma
 Physics Laboratory

The vacuum vessel was encased in the frame and the helical coil wound

Magnet coils were wound to minimize magnetic dipoles and to maintain symmetry

CTH has 7 independently controlled magnet coils

CTH has a very flexible magnetic configuration with vacuum transform variable by factor of 15

Helical Field coil and Toroidal Field coil currents are adjusted to modify vacuum rotational transform: 0.02 < t_{vac}(a) < 0.33

Plasma shape, horizontal and vertical position adjusted using addition coils

Helical Field coil and Toroidal Field coil currents are adjusted to modify vacuum rotational transform: 0.02 < t_{vac}(a) < 0.33

• Shaping Vertical Field coil varies elongation, κ , and shear, $d_{\rm H}/dr$

Plasma shape, horizontal and vertical position adjusted using addition coils

Helical Field coil and Toroidal Field coil currents adjusted to modify vacuum rotational transform: 0.02 < type(a) < 0.33

- Shaping Vertical Field coil varies elongation κ and shear
- Trim Vertical Field coil and Radial Field coil control horizontal and vertical positioning

Ohmic system drives plasma current

- Central solenoid drives up to 80 kA of plasma current
- Up to 95% of the total rotational transform is from plasma current

- Total rotational transform, $\mathbf{t}_{total} = \mathbf{t}_{current} + \mathbf{t}_{vacuum}$
- Fractional transform, $f=t_{vac}(a)/t_{tot}(a)$

The OH circuit is a single swing design

CTH has a fully confining, three-dimensional flux surface shape

CTH Diagnostics

- 3-chord 1mm microwave Interferometer
- Poloidal and toroidal B-dot probe arrays
- Rogowski coils
- 60 channel, dual energy, Soft X-Ray array
- SXR/bolometer arrays
- SXR spectrometer
- H-alpha detectors
- Thomson Scattering (being installed)
- Coherence Imaging (being installed)

3D equilibrium reconstruction with V3FIT is an essential tool for interpreting CTH plasmas

• Plasma current strongly modifies the CTH equilibrium

- V3FIT¹ finds an MHD equilibrium most consistent with data, *d*
- CTH uses VMEC² to model the equilibrium with parameters, p

$$\chi^2 = \sum_{i} \left(\frac{S_i^{o}(\boldsymbol{d}) - S_i^{m}(\boldsymbol{p})}{\sigma_i^{S}} \right)^2$$

Outline

- Fusion Energy and Magnetic Confinement
- Motivation
 - Disruptions
 - Mitigation

• CTH

- Hardware
- Operation
- Disruption Studies
 - Vertical Displacement
 - Density Driven
 - Low q
- Future work

CTH Shot starts when the magnet currents turn on

10 Motor/Generators

Magnet Currents

CTH Shot starts when the magnet currents turn on

10 Motor/Generators

Magnet Currents

ECRH and ohmic power build up the plasma

Overview of CTH operational space and three types of disruptions observed

Outline

- Fusion Energy and Magnetic Confinement
- Motivation
 - Disruptions
 - Mitigation
- CTH
 - Hardware
 - Operation
- Disruption Studies
 - Vertical Displacement
 - Density Driven
 - Low q
- Future work

Elongated plasmas are vertically unstable

ArchMiller, et. al. Phys. Plasmas 21, 056113 (2014).

Plasmas with high elongation stabilized by addition of vacuum transform

Qualitative agreement with analytic criterion for vertical stability

• Energy principle used to derive fraction of vacuum transform needed to stabilize vertical mode in a current-carrying stellarator (G.Y. Fu, Phys. Plasmas, 2000)

•
$$f \equiv \frac{\iota_{\text{vac}}(a)}{\iota_{\text{tot}}(a)} \ge \frac{\kappa^2 - \kappa}{\kappa^2 + 1}$$

- Large aspect ratio, low-β stellarator
- Uniform profiles of current density and vacuum rotational transform

Density limit disruption can be triggered by elevated density with edge fueling

- Two discharges with similar vacuum transform _{tvac} = 0.05.
- A high density shot achieved by ramping the density is observed to disrupt. A lower density discharge maintained at $n_e \approx 1 \times 10^{19} m^{-3}$ did not disrupt at this current.
- Phenomenology of hybrid discharge terminations similar to tokamak disruptions
 - Negative loop voltage spike
 - Current spike followed by rapid decay
 - Strong coherent MHD precursor

Disruption precursor fluctuations indicate internal tearing mode

A growing m/n=2/1 tearing mode identified from B-dot probe measurements

Density at disruption exceeds Greenwald limit as vacuum transform is increased

 Normalized density limit increases by a factor of nearly 4 as the vacuum transform is raised.

CTH can operate beyond the q(a) = 2 current limit, with a slight increase in t_{vac}

- Density limit disruptions
- Vertically unstable plasmas
- Low-q disruptions

Disruption suppression starts when t_{vac} >0.03 while disruption free operation for t_{vac} >0.07

- Ensemble of 526 discharges
- *t*_{vac} varied while I_p ramp rates are kept similar
- q_{tot}(a) computed at peak I_p
- Fast current quench for _{tvac}(a)< 0.03

- Fast/partial current quench and beginning of disruption suppression for 0.03<_{tvac}<0.07
- Disruption free operation for t_{vac}>0.07

Disruption suppression starts when t_{vac} >0.03 while disruption free operation for t_{vac} >0.07

- Ensemble of 526 discharges
- _{tvac} varied while I_p ramp rates are kept similar
- q_{tot}(a) computed at peak I_p
- Fast current quench for

₊_{vac}(a)< 0.03

- Fast/partial current quench and beginning of disruption suppression for 0.03<_{4vac}<0.07
- Disruption free operation for t_{vac}>0.07

Disruption avoidance achieved with fractional rotational transform, $f \sim 10 \%$

fractional transform

Conjecture for disruption suppression

- Experiments on previous currentcarrying discharges of W VII-A stellarator, have shown suppression of low-q disruptions with *f*>0.3.
- 2/1 kink mode was suppressed in this case.
- The disruption mitigation was conjectured to be shifting of rational surface to a region of smaller current density gradient with increasing external rotational transform.
- A similar mechanism may be responsible for disruption suppression on CTH.

Outline

- Fusion Energy and Magnetic Confinement
- Motivation
 - Disruptions
 - Mitigation
- CTH
 - Hardware
 - Operation
- Disruption Studies
 - Vertical Displacement
 - Density Driven
 - Low q
- Future work

Thomson scattering is under development

- Single point measurement initially with plans to upgrade to multi-point system
- Frequency doubled Nd:YAG (532 nm)
- High quantum efficiency PMT detector
- Will be used to calibrate SXR T_e measurements
- T_e, n_e measurements will improve V3FIT reconstructions

P. J. Traverso, et al., Rev. Sci. Instrum. 85 11D852 (2014)

A 200KW, 28GHz gyrotron is being installed to give hotter plasmas for divertor studies

0.5685

0.5229

0.4773

0.4318

0.3862

0.3407 0.2951

0.2496

0.2040

0.850/

0.6040

- 0.2960

ECRH absorption modeling with TRAVIS* code

*Marushchenko et al., Comput. Phys. Commun. 185, 165 (2014)

0.7

0.8

0.9

Error Correction Coils can modify the amplitude and phase of magnetic islands

Divertor modeling has been started with EMC3-EIRENE* code

*Y. Feng, M. Kobayashi, T. Lunt, and D. Reiter, PPCF, 53 (2011) 024009

Summary

- Toroidal magnetic confinement is the leading candidate for a fusion energy power plant.
- The Compact Toroidal Hybrid (CTH) at Auburn University is a university scale experiment used to study the stability of magnetically confined, current-carrying plasmas.
- CTH studies show that 3D shaping on the order of 10% can increase the stability of VDEs, density limit, and low-q instabilities.
- Future work includes the addition of a 200 KW, 28 GHz gyrotron to give hotter plasmas for resonant and non-resonant divertor studies

Overview of CTH operational space and three types of disruptions observed

CTH can operate beyond the Greenwald density limit

• Density-limit disruptions

Vertically unstable plasmas can result in a disruption if uncompensated

- Density limit disruptions
- Vertically unstable plasmas

Low-q disruptions can occur when CTH operates with q(a) < 2

- Density limit disruptions
- Vertically unstable plasmas
- Low-q disruptions

CTH can operate beyond the q(a) = 2 current limit, with a slight increase in t_{vac}

- Density limit disruptions
- Vertically unstable plasmas
- Low-q disruptions

Sawtooth oscillations observed on CTH exhibit behavior similar to that of axisymmetric tokamaks

In the tokamak closed magnetic flux surfaces are generated with inductively driven plasma current

- The poloidal field is generated by the inductively driven plasma current
- In limiting cylindrical case edge rotational transform:

$$t(a) = \frac{\mu_0 R_0 I}{2\pi a^2 B_z(a)} = \frac{1}{q(a)}$$

- Current driven MHD instabilities limit the amount of driven plasma current
- Can lead to uncontrolled loss of confinement: disruptions

Present day tokamaks use 3D magnetic fields to improve control and performance

- Small amounts of 3D fields are used for a variety of purposes on present day tokamaks with $B_{3D}/B_0 \sim 10^{-3}$
 - Resistive wall modes, ELM control, error field correction
- Disruptions do not routinely occur in (net) current free stellarators

(A. Boozer, Plasma Phys. Control. Fusion. 2008)

 Question: What is the effect of higher levels of 3D magnetic shaping, B_{3D}/B₀ ~ 0.1, on tokamak instabilities and disruptions?

Helical magnetic fields are required for confinement in toroidal devices

- A pure toroidal field will not confine a plasma.
 - $B \times \nabla B$ and $R_c \times B$
 - $E \times B$
- Toroidal plasmas are confined with a combination of toroidal and poloidal magnetic fields.

Coherence Imaging is under development

-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4

A three chord, 1mm interferometer is used to measure electron density

Interferometer Chords

The Compact Toroidal Hybrid

The structure of MHD modes is analyzed using one poloidal array and one toroidal array of B-dot probes

Soft X-ray (SXR) arrays

Dual Energy Cameras

SXR Viewing Chords

J. L. Herfindal, et al., Rev. Sci. Instrum. 85 11D850 (2014)

3D equilibrium reconstruction with V3FIT is an essential tool for interpreting CTH plasmas

• Plasma current strongly modifies the CTH equilibrium

- V3FIT¹ finds an MHD equilibrium most consistent with data, *d*
- CTH uses VMEC² to model the equilibrium with parameters, p

$$\chi^2 = \sum_{i} \left(\frac{S_i^{o}(\boldsymbol{d}) - S_i^{m}(\boldsymbol{p})}{\sigma_i^{S}} \right)^2$$

¹J.D. Hanson et al., Nucl. Fus., 2009, ²S.P. Hirshman et al., Comp. Phys. Comm. 1986 ⁶⁷