Introduction and Motivation
* Neutral/plasma boundary layers appear throughout nature, particularly in space Particles collide with neutrals before encountering
and astrophysical plasmas. The physics at such boundaries is not well understood. variations in magnetic field strength

Triple probe allows for local measurement of plasma Uniform discharge model for particle and energy Lower fractional ionization levels appear achievable

parameters balance with hydrogen
Assume:
Given:  Steady state
Stellarator ; e« T =10eV * Cylinder of length nROZ, radius a
. ni —4.5x 10 cm3 * Plasma created through ionization
* Both n, and n  uniform throughout
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Fractional ionization

= Debye Length: Particles lost due to diffusion = plasma generated by ionization
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Electron temperature (eV)
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saturation region

n, = 8.28 x 10 m3, higher than 2.65 x 10'® m-3 shown previously
Substantial changes in the degree of ionization leads to new effects in: r€ =.0012 cm e , L Vn 1 The range of 0.7 to 1.7 kW is lower than the range of 0.7-4.7 kW shown

Reconnection mfp Assume: v=Di— previously

Alfven wave dvnamics n While other fractional ionizations appear high, accessing lower fractional

. . y Electron A ionizations appears possible
Cowling resistivity retarding D¢ = k. (T)n,m2a?R
Code validation in this regime i T . regon | Lg = Tz elm 0
CTH can use Electron Cyclotron Resonance Heating to v, = —2=¢ [m( l >+ 1] +
. 2 2
* We use a triple probe to investigate the plasmas generated through Electron achieve a range of plasma parameters € e
Cyclotron Resonance Heating.
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Probe current

Temperature depends
explicitly on neutral density,
but electron density does not.

Like Hydrogen, power level in Argon plasma affects
electron density more than electron temperature
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Microwave

ECRH pp:.nﬁerrﬂg‘.fﬂ
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Power absorbed by the plasma = power leaving the plasma

We use CTH to attempt to access a range of electron through diffusion

temperatures and fractional ionizations

Electron oscillating
around field line

18 GHz j Processed Data
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Fractional ionization
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Fractional ionization

Capacitive discharge 17.65 GHz

Inductive discharge CTH can decouple plasma
Normal CTH operation

Goal regime: production and confinement

through the use of stellarator fields Electrons oscillate around field lines

and microwave heating at electron cyclotron resonant
frequency:
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p Electron density depends explicitly
on input power but temperature
does not.
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CTH low temperature plasma

parameters: o =

e Nn.=5x10“m3to5 x 1018 m-3 2mm, We energize electrons by inputting _

. Te=1-15eV microwaves with a frequency of 17.65 GHz e e S EN SEE Sk aah n e e
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Electron temperature in hydrogen is more affected by neutral
gas than power level, as suggested by particle balance
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Argon:

 n,=131x108m?3 Hydrogen

’ Have reached 6-8 eV * n,=8.6x10"m?3

Have reached fractional ionization of * Have reached 10-15 eV

25%-45% * Have reached fractional ionization
Temperature decreases with increasing of 10%-30%

power
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. Neutral density estimated through change in pressure
CTH can create magnetic surfaces of constant temperature and y & & P

denSity USing a Ste"arator COiI set Shot 17030803, 2.24 volts on gas valve . .
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Radial Field - 2
(RF) = 3.5%10° |
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Average electron temperature (eV)
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* Profile measured by changing probe position
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3.0x10" | . between shots
: * ECRH power ranges from 1.77 kW to 1.87
: kW (5% change)
(ECo) i 2.0x10° | | * Input neutral density fixed at 8.3 x 1017 m-3

P constant at 5.8 kW * n,constant at 8.6 x 107 m™3
¢ Window size used: 4 ms
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( . . . ) Temperature and density both have fairly flat profiles
Neutral gas input quantity affects electron density by more than As predicted by particle balance, temperature is more dictated by neutral density

expected than power

2axaor £ TS Electron density is dictated by neutral density more than is predicted by power
22x107 . L. balance

jzig RO We can reach fractional ionizations between 0.1 and 0.35 and temperature
Lex10" E RN £ ' between 10 and 15 eV

Lax10" e ! With aggressive gas puffing it appears we can achieve a fractional ionization of
L 1:2x10" £~ 0.001 and an electron temperature of 8 eV
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Conclusions
Using CTH to access a range of fractional ionizations
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A combination of toroidal, 1.5x10° 3 ““‘1‘““ _— "";L"" vy “““‘é“ B— L Triple Probe
If a field line returns to its poloidal, and helical field coils Time (seconds)
starting position, it creates one twist field lines into a stellarator
part of a magnetic surface. configuration.

N

— o

)

7 5.5%x10"
2.5x10"

We adjust input gas quantity through a voltage on a piezoelectric valve. RS L L L DL 5.0x10"
With a known change in pressure, assuming room temperature, we have been ]

D = (Ax)?v P =1 mTorr able to estimate neutral density within chamber:
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Npeutral = 3.55* 10" m™ P =nkgT 1.0x10"

T, =10eV

Tf =1eV This is an estimate which is inaccurate when hitting high fractional ionization
levels.

Going forward we hope to use spectroscopy to more confidently determine
neutral density through the H-a line

Average electron density (m
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Random walk estimate = (step size)? x collision frequency
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Fractional lonization
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Fractional ionization
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radius(m)

P constant at 5.8 kW
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D¢ =1%10"3cm?/s D¢ = .88 cm?/s DI = .88 cm?/s
D¢ = 4+ 10% cm?/s Dft =477 cm?/s Dj = 477 cm?/s

Fractional lonization
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