

• Plasma retards mm-wave beam ~ density \rightarrow phase modulation

• 1 fringe shift $\rightarrow \Delta \phi_{280GHz} = 2\pi \rightarrow \sim 3.0 \times 10^{18}$ electrons/m³

ADVANTAGES

non-perturbative measurement

DESIGN

R_o = 0.75 m

 $a_v = 0.29 \text{ m}$

a_p≤0.20 m

*B*_o ≤ 0.7 T

 $I_p \leq 80 \text{ kA}$

 P_{ECRH} = 15 kW

• subharmonic reference leg feeds directly into mixer – easy alignment of detector

CHALLENGES

- refraction of beam out of retro-reflector \rightarrow loss of signal
- rapid transient-induced errors in fringe counting (fringe jumps)

The Compact Toroidal Hybrid Experiment

PLASMA PARAMETERS shot time ~ 0.1 s $n_{\rho} \le 5 \times 10^{19} \text{ m}^{-3}$

⁷ ≤ 200 eV <β>≤ 0.2% $0.02 \le t_{vac} \le 0.35$

- instability and disruptions over a wide range of operating conditions
- The hybrid feature of CTH is the ability to add toroidal current, which gives significant control over the transform profile.

MOTIVATION

• new configuration provides 2 additional independent diagnostic signals which should provide much improved density profile resolution for studying MHD instabilities and disruptions

Upgrade Modifications

CTH special design features

Subharmonic Mixer (SHM) design

• reference leg supplied direct to SHM facilitates alignment and reduces conversion loss

Double-pass horizontal launch

• allows single-port access to plasma

Chirping of frequency control

• frequency modulation required for phase shift calculation in single-source interferometer

TRAVIS Beam Refraction Study

• **TRAVIS code** was used to analyze possible beam locations to minimize the deflection of the beam from retro-reflector (δZ)

• beam refraction analysis was done on three general classes of profiles - broad, peaked and hollow

• new higher f beam placed where beam loss by deflection is minimized for full system

Limitations of original design

- symmetric off-axis beams are redundant data
- beams cover smaller fraction of plasma volume
- double-pass design imposes a limit on maximum density

Improvements in new design

- asymmetric positions eliminate redundancy
- beams cover higher fraction of plasma volume
- higher frequency mitigates density limit

V3FIT Multi-Beam Comparison

Started with the assumption that more data is better.

Compared 3, 4 and 5-beam configurations

- We estimated potential reduction in the errors in equilibrium reconstruction in expanding signals to a 4 and 5-beam system
- Computed "**fractional error**" (α) based on known and reconstructed density profiles

 $\int_0^1 ds \left| n_{known}(s) - n_{recon}(s) \right|$ $\int_0^1 ds \, n_{known}(s)$

Upgraded Interferometer Overview

 mm-wave beam at 280 GHz and 10mW • Improved beam configuration

voltage-controllec

1	1		
fractional error			
# beams	broad	peaked	hollow
3	0.33707	0.01683	0.38148
4	0.00039	0.00607	0.00023
5	0.00045	0.00638	0.00025
% improvement			
3≻4	99.88%	63.93%	99.94%
3≻5	99.87%	62.09%	99.93%

• main result is there is very little difference between the 4-beam and 5-beam systems in terms of reducing errors in reconstruction

V3FIT Sensitivity Analysis

• **RESULT** - full analysis shows beam spacing provides coverage with good sensitivity over full plasma volume for broad, peaked and hollow density profiles.

System Performance

- interferometer upgrade has been successfully designed, built and demonstrated.
- new channel is incorporated in equilibrium reconstructions
- planning to use new density model to analyze vertical instability
- performance issues of the new channel will be addressed by further refining the frequency modulation program

References

- M. C. Miller et al., Rev Sci. Instrum. **83**, 10E332 (2012)
- Marushchenko et al., Comput. Phys. Commun. 185, 165 (2014)
- Hanson et al., Nucl. Fusion **49**, 075031 (2009)
- I. H. Hutchinson, Prin. of Plasma Diagnostics (2e), CUP

Acknowledgements

• US DOE grant No. DE-FG02-00ER54610