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Numerical simulations are used to investigate the MHD precursors to low-q
disruptions in the Compact Toroidal Hybrid device (CTH).
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The Compact Toroidal Hybrid device (CTH) is stellarator-tokamak hybrid
designed to study the effects of 3D shaping on MHD instabilities.

CTH Parameters
Field Periods 5

Major Radius 0.75m

Minor Radius 0.20m

Magnetic Field ≤ 0.7 T

Plasma Current ≤ 80kA

Number Density ≤ 5× 1019m−3

Electron Temperature ≤ 200 eV

The rotational transform is generated by a combination of external 3D
helical coil currents and internal plasma currents.

The rotational transform, ι, is the inverse of the safety factor: ι = 1/q.

The fractional transform, f , quantifies the amount of 3D shaping.
f = ιvac/ιtotal

CTH can operate with a fractional transform that ranges from f = 4% to
f = 100% by adjusting the plasma current.
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Small amounts of externally applied rotational transform allows CTH to
operate with q (a) < 2.

External kink stability limits
tokamak operation to q (a) ≥ 2.

Disruptions are observed in low-q
discharges after peak plasma
current.

3/2 mode activity is observed in
both disrupting and
non-disrupting discharges.
4/3 mode activity is only
observed in disrupting
discharges.
1/1 activity is observed in both
cases.

Disruptions occur when the edge
safety factor passes through
q (a) ≈ 1.7.

[M. D. Pandya et al., POP 22, 2015 ]
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Low-q disruptions are suppressed at large vacuum transform.

The frequency of disruptions decreases with increasing vacuum transform.
Disruptions always occur when ιvac . 0.03.
Disruptions are completely suppressed for ιvac & 0.07.

Here qtot (a) is the value of the edge safety factor at peak plasma current.
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Nonlinear simulations are initialized with v3fit reconstructions of
experimental discharges.

CTH Discharge v3fit Reconstruction
High Resolution

VMEC Equilibrium

Load Equilibrium
into nimrod

3D Nonlinear
nimrod Simulation
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nimrod evolves the nonlinear MHD equations in primitive form.
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3D current source maintains the current profile against resistive decay.

Magnetic divergence diffusivity enforces ∇ · ~B ≈ 0.

Artificial particle diffusivity smooths small scale density fluctuations.
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Transport effects are modeled using a collisional closure for a hydrogen
plasma.

Temperature dependent magnetic diffusivity:
η
µ0

= η0
µ0

T−
3
2

η0
µ0

= 1.23× 103 m2

s

Thermal conduction is anisotropic with temperature dependent thermal
diffusivities:

~q = −nχ‖∇‖T − nχ⊥∇⊥T
χ‖ = χ‖0T

5/2, χ‖0 = 1.26× 103 m2

s

χ⊥ = χ⊥0T
−1/2, χ⊥0 = 2.69m2

s

The viscous stress tensor is isotropic with a constant viscosity:

~~π = −ν0mn

(
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3
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)
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Simulations of a small transform disrupting discharge are compared against
simulations of a large transform non-disrupting discharge.
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A small ιvac case is used to study the dynamics of a disrupting discharge.

Simulations model a discharge
with a ιvac = 0.015.

Simulations are initialized with
equilibrium reconstructions of the
plasma 2ms before the disruption.

Small ιvac discharges are most
likely to disrupt.

Small ιvac eases toroidal resolution
requirements.
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Predominantly n = 2 and n = 3 modes are unstable and saturate at large
amplitude.
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Linear modes are composed of a family Fourier modes due to coupling
with the stellarator equilibrium fields.
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The dominant n = 2 and n = 3 poloidal structures are consistent with
experimental observations.
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The interaction between the unstable modes and symmetry preserving
islands leads to a large region of stochastic field.
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Symmetry preserving islands are observed early in time.
6/5, 7/5, 8/5, and 9/5 islands are observed

Islands degrade as the unstable modes grow.

Thermal energy is lost when the innermost island chain is destroyed.
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A large ιvac discharge is used to study the dynamics of a non-disrupting
discharge.

This non-disrupting discharge has
ιvac = 0.075.

Disruptions are not observed in
CTH discharges with ιvac & 0.07.

Simulations are initialized with
reconstructions at conditions when
q (a) ≈ 1.7.

In the experiment disruption occur
most frequently when q (a) ≈ 1.7.
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The linearly unstable modes saturate at very small amplitude.
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Symmetry preserving islands persist throughout the simulation

The 6/5, 7/5, and 8/5 island
chains are seen in the figure.

Good nested flux surfaces are
present in the core.

Thermal energy increases
throughout the simulation.
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Simulations suggest that low-q disruptions are triggered by an interaction
between symmetry preserving islands and symmetry breaking instabilities.

Symmetry preserving islands form at the q = 6/5, 7/5, 8/5, and 9/5
rational surfaces.

At small vacuum transform the 4/3 and 3/2 modes are unstable and grow
to large amplitude.

The 4/3 and 3/2 modes interact with the symmetry preserving islands.
The destruction of the islands creates a large volume of stochastic field.
Thermal energy is lost when the inner most island chain is destroyed.

At large vacuum transform the 4/3 and 3/2 modes saturate at small
amplitude.

Symmetry preserving islands persist throughout the simulation.
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