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Numerical simulations are used to investigate the MHD precursors to low-q

disruptions in the Compact Toroidal Hybrid device (CTH).

Experimental Observations

Numerical Model

Simulation Results
@ Disrupting +..c = 0.015 Discharge
@ Non-Disrupting +vac = 0.075 Discharge

Conclusions
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The Compact Toroidal Hybrid device (CTH) is stellarator-tokamak hybrid

designed to study the effects of 3D shaping on MHD instabilities.

CTH Parameters

Field Periods 5
Major Radius 0.75m
Minor Radius 0.20m
Magpnetic Field <07T
Plasma Current < 80kA
Number Density <5x10¥m™3
Electron Temperature < 200 eV

@ The rotational transform is generated by a combination of external 3D
helical coil currents and internal plasma currents.

o The rotational transform, +, is the inverse of the safety factor: + = 1/q.
@ The fractional transform, f, quantifies the amount of 3D shaping.
o f = tvac/*total
@ CTH can operate with a fractional transform that ranges from f = 4% to
f = 100% by adjusting the plasma current.
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Small amounts of externally applied rotational transform allows CTH to

operate with g (a) < 2.

o External kink stability limits
tokamak operation to g (a) > 2.

@ Disruptions are observed in low-q
discharges after peak plasma
current.

e 3/2 mode activity is observed in
both disrupting and
non-disrupting discharges.

e 4/3 mode activity is only
observed in disrupting
discharges.

e 1/1 activity is observed in both
cases.

@ Disruptions occur when the edge
safety factor passes through
q(a) = 1.7.
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Low-q disruptions are suppressed at large vacuum transform.
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@ The frequency of disruptions decreases with increasing vacuum transform.

o Disruptions always occur when +,5c < 0.03.
o Disruptions are completely suppressed for +y5c 2 0.07.

@ Here gt (a) is the value of the edge safety factor at peak plasma current.
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Nonlinear simulations are initialized with V3FIT reconstructions of

experimental discharges.

. . High Resolution
CTH Discharge }—> V3FIT Reconstruction VMEC Equilibrium
3D Nonlinear Load Equilibrium
NIMROD Simulation into NIMROD
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NIMROD evolves the nonlinear MHD equations in primitive form.

§n<%—:+v VT):—PV-V—V-&—HNZ

@ 3D current source maintains the current profile against resistive decay.

@ Magpnetic divergence diffusivity enforces V - B ~0.
o Artificial particle diffusivity smooths small scale density fluctuations.
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Transport effects are modeled using a collisional closure for a hydrogen

plasma.

@ Temperature dependent magnetic diffusivity:

o L — m-,—%
Ko Ko ,
o M —=123x 1037
Ko s
@ Thermal conduction is anisotropic with temperature dependent thermal
diffusivities:
o G=—nVyT—muV.T
2
o x| = x| T2, Xjo = 1.26 x 1037
2
o X1 :XJ_OT_I/2, X_10 =2.69mT

@ The viscous stress tensor is isotropic with a constant viscosity:
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Simulations of a small transform disrupting discharge are compared against

simulations of a large transform non-disrupting discharge.
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A small +,, case is used to study the dynamics of a disrupting discharge.

Simulations model a discharge
with a +,.,c = 0.015.

Simulations are initialized with
equilibrium reconstructions of the
plasma 2ms before the disruption.

Small +,c discharges are most
likely to disrupt.

Small +,,c eases toroidal resolution
requirements.
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Predominantly n =2 and n = 3 modes are unstable and saturate at large

amplitude.
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@ Linear modes are composed of a family Fourier modes due to coupling
with the stellarator equilibrium fields.
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The dominant n = 2 and n = 3 poloidal structures are consistent with

experimental observations.
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The interaction between the unstable modes and symmetry preserving

islands leads to a large region of stochastic field.
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@ Symmetry preserving islands are observed early in time.
e 6/5, 7/5, 8/5, and 9/5 islands are observed

o Islands degrade as the unstable modes grow.

@ Thermal energy is lost when the innermost island chain is destroyed.
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A large +,,c discharge is used to study the dynamics of a non-disrupting

discharge.
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The linearly unstable modes saturate at very small amplitude.
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Symmetry preserving islands persist throughout the simulation

e The 6/5, 7/5, and 8/5 island
chains are seen in the figure.

@ Good nested flux surfaces are
present in the core.

@ Thermal energy increases
throughout the simulation.
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Simulations suggest that low-q disruptions are triggered by an interaction

between symmetry preserving islands and symmetry breaking instabilities.

@ Symmetry preserving islands form at the ¢ = 6/5, 7/5, 8/5, and 9/5
rational surfaces.

@ At small vacuum transform the 4/3 and 3/2 modes are unstable and grow
to large amplitude.

e The 4/3 and 3/2 modes interact with the symmetry preserving islands.
o The destruction of the islands creates a large volume of stochastic field.
o Thermal energy is lost when the inner most island chain is destroyed.

o At large vacuum transform the 4/3 and 3/2 modes saturate at small
amplitude.
e Symmetry preserving islands persist throughout the simulation.
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