
Compact Toroidal Hybrid Experiment

Density Limit Disruptions in CTH

Determination of Current and q Profiles Using SXR Emissivity Measurements
CTH is a low aspect-ratio, tokamak/stellarator hybrid with flexible 

magnetic configuration
 Address strong 3D shaping effects on MHD instabilities and disruptions

 Ohmic current within pre-established ECRH stellarator plasma

 Flexible vacuum field configuration to change the amount of 3D fields applied
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3D equilibrium reconstruction is a critical tool for 
understanding 3D confinement and stability

 V3FIT[1], which uses VMEC[2] as the equilibrium solver, is used to 
reconstruct CTH plasmas

 V3FIT optimizes the plasma parameters to achieve the best agreement 
between modeled signals and experimental measurements

 V3FIT on CTH presently uses magnetic diagnostics, SXR measurements for 
fitting

Signal Effectiveness: a measure of how effective one diagnostic 
is in determining a specific plasma parameter

 Current distribution can be determined from geometric information of 
magnetic flux surfaces [3]

 Flux surfaces reconstructed using 160 SXR measurements, assuming SXR 
emission to be constant on flux surfaces

 SXR inputs are treated as line-integrated signals

 Emissivity profiles are reconstructed in V3FIT from SXR cameras employing 
identical filters.

 Three reconstructing methods: using 
magnetic data only; using the q=1 surface 
constraint; using both SXR and magnetic data

 Edge q(a) are similar for all reconstructions: 
external magnetics measure the total current 
accurately

 Central q from either reconstruction using 
SXR data or the inversion information agree to 
within 15% or less, confirming peakedness of 
current profile relative to fitting with 
magnetics alone.

SXR measurements helps to reconstruct sawtoothing plasma

 Reconstructions with only magnetic 
diagnostics yield inaccurate results
• Resulting central q far from 1
• Large fitting uncertainties in both 

current and q profiles
 Inclusion of SXR data results more 

accurate reconstruction
• Reconstructed central q close to 1
• A substantially more peaked 

current profile
• Lower uncertainties in both current 

and q profiles
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 The most effective SXR chords found to be those spanning the strong 
gradients in the signal level.

 The central cameras have the most effective chords

 Camera at the full period of CTH (φ=0o)  is less sensitive compared to 
cameras at the half period (φ=36o and φ=252o)

Density limit disruptions in CTH similar to those in tokamaks

Empirical Greenwald density limit
 Operating density limit for all tokamaks: 𝑛𝑛𝐺𝐺 ≡

𝐼𝐼𝑃𝑃
𝜋𝜋𝑎𝑎2

[4]

 Density limit associated with MHD instability

• Edge cooling of dense edge plasma by radiation or density-driven 
turbulence initiates narrowing of plasma current profile which becomes 
MHD unstable to tearing modes

 Phenomenology of hybrid discharge 
terminations similar to tokamak 
disruptions: 

• Current spike followed by rapid 
decay

• Increasing density

• Negative loop voltage spike

• Strong coherent MHD precursor

Growing m/n=2/1 tearing mode locks prior to disruption

m=2

n=1

Poloidal array of Bθ probes

Toroidal array of Bθ probes

 Sequential reconstructions done 
using both SXR and magnetic data

 𝑞𝑞=2 surface moving towards plasma 
core before disruption

 Sudden peaking of current profile 
just prior to disruption

 Ensemble of disrupting plasmas with 
varying vacuum transforms

 Reconstructions of current profile 
performed just before disruption

 Current profile narrows to a greater 
extent as the external transform is 
raised

 Plasma disrupts at lower current 
with increasing external vacuum 
transform

 Densities and currents 
recorded before disruption

 For a given current, higher 
densities are achieved with 
addition of vacuum transform

 Greenwald limits calculated using 
toroidally averaged poloidal cross-
section areas

 Normalized density limit increases 
by a factor of nearly 4 as the 
vacuum transform is raised

Multiple SXR cameras installed in different toroidal and 
poloidal locations

 Ten pinhole-type SXR/bolometer 
cameras, 200 channels total

 Three two-color SXR cameras, two 
bolometer/SXR system

 160 SXR measurements used in V3FIT

Position and chordal views of all SXR cameras

 7 SXR cameras installed at the half period of CTH (φ=36o and φ=252o), 
where the plasma is more circular

 1 camera installed at the full period of CTH (φ=0o), where the plasma 
is most vertically elongated

Narrowing of current profile before disruption Modified density limit behavior with external vacuum transform

 Clear sawteeth and inversion of 
the phase (q=1 surface) from 
SXR measurements

Experimental measurements (red) and modeled signals (blue) match well

 Reasonable profile fitting supports the assumption that SXR emissivity may 
be taken to be a constant on a flux surface for CTH plasmas

SXR measurements of internal emission improve reconstruction of plasma core

Current profile found to broaden with increasing external vacuum transform

 Group of discharges with similar 
density and current but varying 
external vacuum transform

 HWHM of reconstructed current 
profile increases with vacuum 
transform

 Addition of 3D shaping fields suppresses internal MHD instabilities, reducing the 
current gradient

 Change of trapped electron fraction in the toroidal magnetic ripples modifies the 
neoclassic resistivity

Passive suppression from external applied vacuum transform

 Two discharges with similar 
density and current but different 
vacuum field configuration 

 Addition of vacuum transform flattens 
both the current and q profile, decreasing 
the current gradient where q=2

 ∆′ decreases below zero before 
disruption

 Addition of external vacuum 
transform elevates the value of ∆′, 
providing a stabilization effect

Evolution of stability parameter ∆′ towards disruption

ιtot =  ιcurrent + ιexternal Current profile


	Slide Number 1

