NIMROD Simulations of Low-q Discharges in the Compact Toroidal Hybrid Device

E.C. Howell¹, D.A. Ennis¹, J.D. Hanson¹, G.J. Hartwell¹, J.L. Herfindal¹, D.A. Maurer¹, M.D. Pandya²

Auburn University¹, University of Wisconsin-Madison²

APS-DPP Conference, San Jose CA, October 31, 2016

Outline: Resistive MHD simulations using NIMROD are used to investigate low-q disruptions in the Compact Toroidal Hybrid device (CTH).

Experimental Observations of Low-q Disruptions in CTH

2 Modeling CTH with NIMROD

Simulation Results

4 Conclusions and Future Work

The Compact Toroidal Hybrid device (CTH) is stellarator-tokamak hybrid designed to study the effects of 3D shaping on MHD instabilities.

CTH Parameters	
Field Periods	5
Major Radius	0.75m
Minor Radius	0.20m
Magnetic Field	\leq 0.7 T
Plasma Current	\leq 80kA
Number Density	\leq 5 $ imes$ 10 ¹⁹ m $^{-3}$
Electron Temperature	\leq 200 eV

- The rotational transform is generated by a combination of currents in external 3D helical coils and internal plasma currents.
 - The rotational transform, t, is the inverse of the safety factor: t = 1/q.
- The fractional transform, f, quantifies the amount of 3D shaping.

• $f = t_{vac}/t_{total}$

• CTH can operate with a fractional transform that ranges from f = 4% to f = 100% by adjusting the plasma current.

A small amount of vacuum rotational transform allows CTH to operate with q(a) < 2.

- External kink stability typically limits tokamak operation to $q(a) \ge 2$.
- Strong m/n = 2/1 mode activity is not observed in CTH when q (a) passes through 2.
- Disruptions are observed in these low-q discharges after peak plasma current.
 - 3/2 mode activity is observed in both disrupting and non-disrupting discharges.
 - 4/3 mode activity is only observed in disrupting discharges.
 - 1/1 activity is observed in both cases.
- Disruptions occur when the edge safety factor passes through $q(a) \approx 1.7$.

[M. D. Pandya et al., POP 22, 2015]

- The frequency of disruptions decreases with increasing vacuum transform.
 - Disruptions always occur when $t_{vac} \lesssim 0.03$
 - Disruptions are completely suppressed for ${\it t_{vac}}\gtrsim 0.07.$
- Here $q_{tot}(a)$ is the value of the edge safety factor at peak plasma current.

Modeling CTH with ${\rm NIMROD}$: Nonlinear simulations are initialized with ${\rm V3FIT}$ reconstructions of experimental discharges.

- Simulations are initialized with V3FIT reconstructions of CTH discharges.
- In the results presented here we model CTH discharge 16080535.
- This is a low-q discharge with $t_{vac} = 0.015$ that disrupted around t = 1.662s.
- The simulations are initialized with reconstructions of the equilibrium 2ms before the disruption.
- This discharge has a strong soft X-ray signal which aids in the reconstruction of the internal current profile.

Equilibrium reconstructions incorporate soft X-ray measurements to constrain the internal safety factor profile.

- The reconstructed safety factor profile calculated using only the magnetic diagnostics is only accurate in the edge (s ≥ 0.8).
 - s is the normalized toroidal flux.
- Reconstructions that incorporate soft X-ray measurements provide a better estimate of the internal q profile.
 - We assume that the soft X-ray emissivity is a flux function.
 - This constrains the shape of internal flux surfaces.
- See X. Ma's poster, CP10.00031, for more information on the incorporation of soft X-ray measurements into CTH reconstructions.

$$\begin{split} &\frac{\partial n}{\partial t} + \nabla \cdot \left(n \vec{V} \right) = \nabla \cdot \left(D \nabla n - D_h \nabla \nabla^2 n \right) \\ &\rho \left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} \right) = \vec{J} \times \vec{B} - \nabla P - \nabla \cdot \vec{\pi} \\ &\frac{3}{2} n \left(\frac{\partial T}{\partial t} + \vec{V} \cdot \nabla T \right) = -P \nabla \cdot \vec{V} - \nabla \cdot \vec{q} + \eta J^2 \\ &\frac{\partial \vec{B}}{\partial t} = -\nabla \times \left(\eta \vec{J} - \vec{V} \times \vec{B} \right) + k_{divb} \nabla \nabla \cdot \vec{B} \\ &\vec{\pi} = \rho \nu \left(\nabla \vec{V} + \nabla \vec{V}^{\mathsf{T}} - \frac{2}{3} \vec{i} \nabla \cdot V \right) \\ &\vec{q} = -n \chi_{\parallel} \hat{b} \hat{b} \cdot \nabla T - n \chi_{\perp} \left(\vec{i} - \hat{b} \hat{b} \right) \cdot \nabla T \end{split}$$

- Magnetic divergence diffusion is used to control $\nabla \cdot \vec{B}$ errors.
- Artificial particle diffusivities smooth out small scale density fluctuations.

- The resistivity and parallel thermal diffusivity are calculated using the Braginskii model for deuterium plasma.
 - We use a temperature dependent Spitzer resistivity: $\eta = \eta_0 T^{-3/2}$.
 - $S = 1.1 \times 10^5$
 - Temperature dependent parallel thermal diffusivity: $\chi_{\parallel} = \chi_{\parallel 0} T^{5/2}$.
 - The electron parallel thermal diffusivity is used since $\chi_{e\parallel} \gg \chi_{i\parallel}$.
- Uniform viscosity and uniform perpendicular thermal diffusivity are used for numerical convenience.
 - The perpendicular thermal diffusivity is $\chi_{\perp}=2\mathsf{m}^2/\mathsf{s}.$
 - The isotropic viscosity is $\nu = 10 \text{m}^2/\text{s}.$
 - $\bullet \ \mathsf{Pr}_m \approx 20$
- A loop voltage is applied to maintain the current throughout the simulation.

• CTH plasmas are limited by a collection of partial circular limiters.

- The radius of the limiters varies from 24.5 cm to 27 cm.
- The limiters are located at different toroidal and poloidal locations.
- $\bullet\,$ The limiters subtend an angle between 30° to 120° in the poloidal direction.
- NIMROD uses a spectral element mesh to represent the poloidal plane and a Fourier series to represent the toroidal direction.
 - The code requires an symmetric computational domain.
- We use a circular mesh with a 26cm radius to approximate the combined effect of all the limiters.
 - Previous modeling efforts used a circular mesh with a 30cm radius.

Simulation Results: Nonlinear simulations exhibit a variety of different types of MHD activity.

- The first 2 ms of the simulation are quiescent.
- A 5/5 island chain coalesces into an 1/1 island around t=2.5 ms.
- Sawtooth observations are observed after the island coalescence.
- The figure shows 14 Fourier modes for clarity. The simulations use 43 Fourier modes to resolve the toroidal direction.

Islands with n = 5 toroidal periodicity are easily excited early in the simulation.

- These islands are non-symmetry breaking.
 - They have the same symmetry as CTH.
- The islands saturate at small amplitude and have a minimal effect on the dynamics.
- The islands grow and decay as the safety factor profile evolves due to a steepening of the current profile.
- A 5/5 island chain appears when the safety factor drops below 1.

 A large volume of stochastic field is observed as the island grows to large amplitude.

Repeated sawtooth oscillations are observed late in time.

• Field line degradation is limited to the core.

 Sawtooth oscillations have be studied in CTH both experimentally (see poster CP10.00030) and numerically (N.A. Roberds POP 23, 2016).

- Reconstructions that incorporate soft X-ray measurements provide more accurate initial conditions for the simulations.
- The 3/2 and 4/3 modes believed to be responsible for the low-q disruptions in the experiment are not yet observed in simulations.
- The *n* = 2 and *n* = 3 Fourier mode energies grow early in the simulation; however, these modes saturate at small amplitude.
 - These modes initially have little energy and are stabilized before they have time to grow to a significant amplitude.
 - We hypothesize that these modes are stabilized by changes in the current and pressure profiles.
 - In the simulations these profiles evolve due to the transport effects in the resistive MHD model.
- We are exploring several remedies to address the above issue.
 - Remedy 1: Initialize simulations with reconstructions of the discharge at peak plasma current, and then model the entire current decay.
 - Remedy 2: Initialize the simulation with larger n = 2 and n = 3 perturbations.