Simulations of Sawtooth Oscillations in CTH
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Introduction Sawtooth Simulations of CTH Running in Tokamak Mode

Sawtoothing is a repeated relaxation that occurs in the cores of tokamak devices under many
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 Toroidal plasma rotation is evident from the poloidal rotation of the reconnecting core.

Sawtooth Simulations of CTH With Helical Stellarator Field

* After gy < 1, the internal kink mode becomes * Inthe nonlinear evolution, an island surface grows * A correlation, in simulation and
unstable and is excited at a low amplitude. and the center of the island becomes the new experiment, is observed between
* Unstable mode is represented with Fourier magnetic axis after the plasma core is completely * Strength of stellarator field
numbersn = 1,4,6,9,11,14,16, ... reconnected. * Sawtooth period T,y
e Can be said that n is no longer a good * Compared to the tokamak case, the island and core * Asstellarator field is increased,
quantum number when helical fields are are both helically deformed. confinement is degraded and
added temperature is lowered

* The energies of these Fourier numbers grow
at the same rate since they are representing
the same unstable mode.
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