log-majorization inequalities involving geometric mean of matrices

Let \mathbb{R}^+ denote the set of all positive real numbers. For $a, b \in \mathbb{R}^+$, the geometric mean is \sqrt{ab} . In the extension for two matrices, a good platform is \mathbb{P}_n , the set of all $n \times n$ positive definite matrices. The challenge is that the product of two positive definite matrices is not necessarily positive definite and \sqrt{AB} , where $A, B \in \mathbb{P}_n$, is not an appropriate definition always. Operator theory and differential geometry are two views regarding the extension of the definition of geometric mean from \mathbb{R}^+ to \mathbb{P}_n . Since differential geometry point of view gives us a good understanding of the geometric mean of two positive definite matrices, after reviewing the Riemannian structure of \mathbb{P}_n , and the geometric mean in terms of geodesic, we will present some log-majorization inequalities and norm inequalities involving geometric mean. Furthermore, very recent inequalities of Lemos and Soares involving geometric mean will be presented.