Stochastic solution of Cauchy problems

Erkan Nane

DEPARTMENT OF MATHEMATICS AND STATISTICS
AUBURN UNIVERSITY

October, 2009

"Probability is simply a branch of measure theory, with its own special emphasis and field of application ..."

J.L. Doob

in his book "Stochastic processes", Wiley, New York, 1953.

Probability and transforms

If the random variable Y has density f(x) so that

$$P(a \le Y \le b) = \int_a^b f(x) dx$$

then f(x) has Fourier transform

$$\hat{f}(k) = E(e^{-ikY}) = \int_{-\infty}^{\infty} e^{-ikx} f(x) dx$$

$$= \int_{-\infty}^{\infty} (1 - ikx + \frac{1}{2!} (ikx)^2 + \cdots) f(x) dx$$

$$= 1 - ik\mu_1 - \frac{1}{2!} k^2 \mu_2 + \cdots$$

where the *I*th moment is $\mu_I = \int_{-\infty}^{\infty} x^I f(x) dx$

Central limit theorem

If $\mu_1=0$ and $\mu_2=2$ then $\hat{f}(k)=1-k^2+\cdots$ The IID sum $S(n)=Y_1+\cdots+Y_n$ has FT $\hat{f}(k)^n$ and the normalized sum $S(n)/\sqrt{n}$ has FT

$$\left(\hat{f}(k/\sqrt{n})\right)^n = (1 - (k/\sqrt{n})^2 + \cdots)^n$$

$$= \left(1 - \frac{k^2}{n} + \cdots\right)^n$$

$$\to e^{-k^2} \equiv \hat{g}(k) \text{ as } n \to \infty.$$

Inverting the Fourier transform reveals a Gaussian(Normal) density

$$g(x) = \frac{1}{\sqrt{4\pi}} e^{-x^2/4}$$

Brownian motion

If Y_n represents a particle jump at time n then $S(n)=Y_1+\cdots+Y_n$ is the location of the particle at time n. Expanding the time scale by a factor of c>0 and taking limits as $c\to\infty$ shows that $c^{-1/2}S([ct])\implies W(t)$ since

$$\hat{f}(c^{-1/2}k)^{[ct]} = \left(1 - \frac{k^2}{c} + \cdots\right)^{[ct]}$$

$$\to e^{-k^2t} \equiv \hat{p}(t, k) \text{ as } c \to \infty$$

for all t > 0. Inverting the FT shows that the density of the limiting Brownian motion process W(t) is Gaussian (Normal)

$$p(t,x) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}.$$

Brownian motion

Classical random walk

Outline

$$S(t) = Y_1 + \dots + Y_{[t]}$$

A particle takes a random jump Y_n at time t = n. Particle location at time t is a simple random walk S(t) and scaling limit is a Brownian motion.

$$c^{-1/2}S(ct) \Rightarrow W(t) \approx N(0, \sigma^2 t)$$
 $(c \to \infty)$

Contract spatial scale

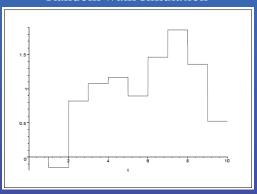
Expand time scale

Normal limit density

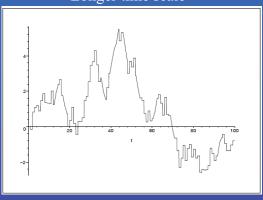
Add an advective drift:
$$L(t) = vt + W(t) \approx N(vt, \sigma^2 t)$$

Random walk simulation

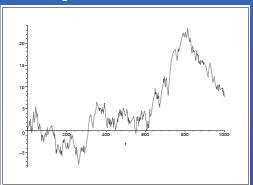
Outline



Longer time scale



Scaling limit: Brownian motion



Random graph of fractal dimension 1.5 and no jumps.

Most likely shape of a Brownian path.

Microsoft stock-the last two years

Some history of Brownian motion (BM)

- Robert Brown (1827), a Botanist: was first to observe that pollen grains in water move continuously and very erratically.
- ► Louis Bahcelier (1900): presented a stochastic analysis of the stock and option markets using BM
- ▶ Albert Einstein (1905): used BM to determine the law of the position of the particle...
- Norbert Wiener (1923): Mathematical foundations of BM
- ▶ Doob (1956): connections to analysis, heat equation
- Kolmogorov, Lévy, Khintchine,

Derivatives and transforms

▶ If the Laplace transform of f(t) is defined for s > 0 by

$$\tilde{f}(s) = \int_0^\infty e^{-st} f(t) dt$$

then $\frac{df(t)}{dt}$ has Laplace transform $s\tilde{f}(s) - f(0)$.

▶ If the Fourier transform of f(x) is defined for $k \in \mathbb{R}$ by

$$\hat{f}(k) = \int_{\mathbb{R}} e^{-ikx} f(x) dx$$

then $\frac{df(x)}{dx}$ has Fourier transform $ik\hat{f}(k)$.

The diffusion (heat) equation

Taking Fourier transforms in the classical diffusion equation

$$\frac{\partial p(t,x)}{\partial t} = \frac{\partial^2 p(t,x)}{\partial x^2}$$

yields

$$\frac{\partial \hat{p}(t,k)}{\partial t} = (ik)^2 \hat{p}(t,k) = -k^2 \hat{p}(t,k)$$

whose solution

$$\hat{p}(t,k) = e^{-k^2t}$$

inverts to the same limit density for the Brownian motion W(t). For a cloud of diffusing particles p(t,x) is the particle density.

Let $W_t \in \mathbb{R}$ be Brownian motion started at x. Then the function (convolution of f and p(t,x))

$$u(t,x) = E_x[f(W(t))] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-(x-y)^2/4t} f(y) dy$$

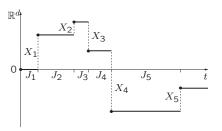
solves the heat equation

$$\frac{\partial}{\partial t}u(t,x) = \frac{\partial^2 u(t,x)}{\partial x^2}, \quad t > 0, \quad x \in \mathbb{R}$$
$$u(0,x) = f(x), \quad x \in \mathbb{R}.$$

This is due to J.L. Doob (1956).

In this case we say, Brownian motion W(t) is a stochastic solution of the heat equation.

Continuous time random walks



The CTRW is a random walk with jumps X_n separated by random waiting times J_n . The random vectors (X_n,J_n) are i.i.d.

Heavy tailed waiting times

Random wait J_n between jumps, nth jump time given by a random walk

$$T(n) = J_1 + \dots + J_n$$

Number of jumps by time *t* is inverse $N(t) \ge n \longleftrightarrow T(n) \le t$

For heavy tail waiting times $P(J_n > t) \approx Ct^{-\beta}$ $(0 < \beta < 1)$

$$c^{-1/\beta}T(ct) \Rightarrow P(t)$$
 $c^{-\beta}N(ct) \Rightarrow Q(t)$

Inverse processes have inverse scaling

$$P(ct) \approx c^{1/\beta} P(t)$$
 $Q(ct) \approx c^{\beta} Q(t)$

Continuous time random walks (CTRW)

Particle jump random walk has scaling limit

$$c^{-1/2}S([ct]) \implies W(t).$$

Number of jumps has scaling limit $c^{-\beta}N(ct) \implies Q(t)$.

CTRW is a random walk subordinated to (a renewal process) N(t)

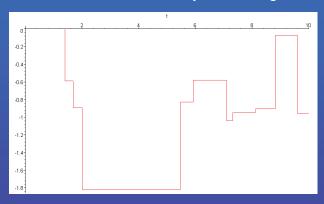
$$S(N(t)) = X_1 + X_2 + \cdots + X_{N(t)}$$

CTRW scaling limit is a subordinated process:

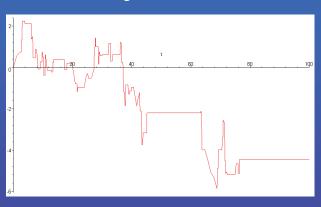
$$c^{-\beta/2}S(N(ct)) = (c^{\beta})^{-1/2}S(c^{\beta} \cdot c^{-\beta}N(ct))$$

 $\approx (c^{\beta})^{-1/2}S(c^{\beta}Q(t)) \Longrightarrow W(Q(t)).$

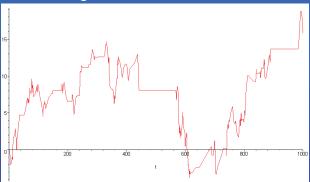
CTRW simulation with heavy tail waiting times



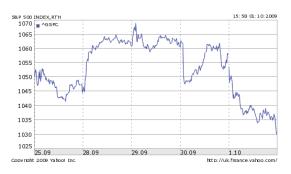
Longer time scale



Scaling limit: Subordinated motion



Limit retains long waiting times.



Power law waiting times

- ▶ Wait between solar flares $1 < \beta < 2$
- ▶ Wait between raindrops $\beta = 0.68$
- ▶ Wait between money transactions $\beta = 0.6$
- Wait between emails $\beta \approx 1.0$
- ▶ Wait between doctor visits $\beta \approx 1.4$
- ▶ Wait between earthquakes $\beta = 1.6$
- ▶ Wait between trades of German bond futures $\beta \approx 0.95$
- ▶ Wait between Irish stock trades $\beta = 0.4$ (truncated)

Fractional derivatives: An old idea gets new life

- Fractional derivatives $D^{\beta}f(x)$ for any $\beta > 0$ were invented by Leibniz (1695) soon after the more familiar integer derivatives.
- ▶ The Caputo fractional derivative of order $0 < \beta < 1$ defined by

$$D_t^{\beta}g(t) = \frac{1}{\Gamma(1-\beta)} \int_0^t \frac{dg(s)}{ds} \frac{ds}{(t-s)^{\beta}}$$
 (1)

was invented to properly handle initial values (Caputo 1967).

Laplace transform of $D_t^{\beta}g(t)$ is $s^{\beta}\tilde{g}(s) - s^{\beta-1}g(0)$ incorporates the initial value in the same way as the first derivative.

examples

$$D_t^{eta}(t^p) = rac{\Gamma(1+p)}{\Gamma(p+1-eta)} t^{p-eta}$$

$$D_t^{\beta}(e^{\lambda t}) = \lambda^{\beta}e^{\lambda t} - \frac{t^{-\beta}}{\Gamma(1-\beta)}$$
?

$$D_t^{\beta}(\sin t) = \sin(t + \frac{\pi\beta}{2})$$

Time-fractional model for anomalous sub-diffusion

Nigmatullin (1986), Zaslavsky (1994) studied the Cauchy problem

$$\frac{\partial^{\beta}}{\partial t^{\beta}}u(t,x) = \frac{\partial^{2}u(t,x)}{\partial x^{2}}; \quad u(0,x) = f(x)$$
 (2)

that models particles that wait for a time J_n before the nth jump, where $P(J_n > t) \approx t^{-\beta}$ for some $0 < \beta < 1$.

The solution to time-fractional diffusion is given by

$$u(t,x) = E_x(f(W(Q(t)))) = \int_0^\infty q(u,x)f_{Q(t)}(u)du$$

 $q(u,x) = E_x(f(W(u)))$ solution to the heat equation.

 $f_{Q(t)}(u)$ inverse stable density of u = Q(t)

In finance, Q(t) represents the number of trades by time t.

Proof uses Fourier and Laplace transforms and inverting these transforms.

Taking Fourier-Laplace transform of the Equation (2) gives

$$\bar{u}(s,k) = \frac{s^{\beta-1}\hat{f}(k)}{s^{\beta}+k^2}$$

$$= s^{\beta-1}\int_0^\infty \exp(-[s^{\beta}+k^2]I)\hat{f}(k)dI$$
(3)

The next step is to invert this Fourier-Laplace transform using the fact that Q(t) has density

$$f_{Q(t)}(s) = \frac{t}{\beta} g_{\beta}(\frac{t}{s^{1/\beta}}) s^{-1/\beta-1}$$
, and $\int_0^{\infty} e^{-su} g_{\beta}(u) = e^{-s^{\beta}}$.

In the case $\beta = 1/2$,

$$f_{Q(t)}(s) = \frac{2}{\sqrt{4\pi t}}e^{-s^2/4t} = f_{|W(t)|}(s)$$

This proof is due to Meerschaert, Benson, Scheffler and Baeumer (2002)

Equivalence to Higher order PDE's

For any m = 2, 3, 4, ... both the Cauchy problem

$$\frac{\partial u(t,x)}{\partial t} = \sum_{j=1}^{m-1} \frac{t^{j/m-1}}{\Gamma(j/m)} \Delta^j f(x) + \Delta^m u(t,x); \quad u(0,x) = f(x)$$
(4)

and the fractional Cauchy problem:

$$\frac{\partial^{1/m}}{\partial t^{1/m}}u(t,x) = \Delta u(t,x); \quad u(0,x) = f(x), \tag{5}$$

have the same unique solution given by

$$u(t,x) = \int_0^\infty p((t/s)^{1/m}, x) g_{1/m}(s) \, ds = E_x(f(W(Q(t))))$$

▶ Due to Baeumer, Meerschaert, and Nane TAMS(2009).

Connections to iterated Brownian motions

▶ Orsingher and Benghin (2004) and (2008) show that for $\beta = 1/2^n$ the solution to

$$\frac{\partial^{1/2^n}}{\partial t^{1/2^n}}u(t,x)=\Delta_x u(t,x);\quad u(0,x)=f(x),\qquad (6)$$

is given by running

$$I_{n+1}(t) = W_1(|W_2(|W_3(|\cdots(W_{n+1}(t))\cdots|)|))$$

Where W_j 's are independent Brownian motions, i.e., $u(t,x)=E_x(f(I_{n+1}(t)))$ solves (6), and solves (4) for $m=2^n$.

Corollary

• We obtain the equivalence of one dimensional distributions in the case Q(t) is the inverse stable subordinator of index $\beta = 1/2^n$

$$I_{n+1}(t) = W_1(|W_2(|W_3(|\cdots(W_{n+1}(t))\cdots|)|)) \stackrel{(d)}{=} W_1(Q(t))$$

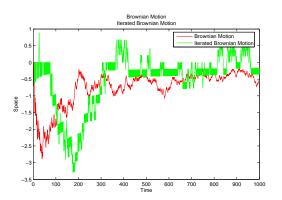


Figure: Simulations of iterated Brownian motions

Heat equation in bounded domains

Heat equation in *D* with Dirichlet boundary conditions:

$$\begin{array}{rcl} \frac{\partial u(t,x)}{\partial t} & = & \Delta u(t,x), & x \in D, \ t > 0, \\ u(t,x) & = & 0, \ x \in \partial D; \ u(0,x) = f(x), \ x \in D. \end{array}$$

When D=(0,M) can be solved by separation of variables: set $u(t,x)=\phi(x)T(t)$. Hence $\phi(x)$ satisfies

$$\frac{\partial^2 \phi(x)}{\partial x^2} = -\lambda \phi(x), \quad x \in (0, M), \lambda > 0; \quad \phi(0) = 0, \quad \phi(M) = 0$$

and T(t) satisfies $T'(t) = -\lambda T(t)$; T(0) = 1.

$$\phi_n(x) = \left(\frac{2}{M}\right)^{1/2} \sin(n\pi x/M), \quad \lambda_n = \frac{\pi^2 n^2}{M^2}, \, T_n(t) = e^{-\lambda_n t}.$$

Same applies in any dimension $d \ge 1$.

Denote the eigenvalues and the eigenfunctions of Δ_D by $\{\lambda_n, \phi_n\}_{n=1}^{\infty}$, where $\phi_n \in C^{\infty}(D)$. The corresponding heat kernel is given by

$$p_D(t,x,y) = \sum_{n=1}^{\infty} e^{-\lambda_n t} \phi_n(x) \phi_n(y).$$

The series converges absolutely and uniformly on $[t_0, \infty) \times D \times D$ for all $t_0 > 0$. In this case, the semigroup given by

$$T_D(t)f(x) = E_X[f(W(t))I(t < \tau_D(X))] = \int_D p_D(t, x, y)f(y)dy$$
$$= \sum_{n=1}^{\infty} e^{-\lambda_n t} \phi_n(x)\overline{f}(n)$$

solves the Heat equation in *D* with Dirichlet boundary conditions.

Fractional diffusion in bounded domains

$$\frac{\partial^{\beta}}{\partial t^{\beta}}u(t,x) = \Delta u(t,x); \quad x \in D, \ t > 0$$

$$u(t,x) = 0, \ x \in \partial D, \ t > 0; \quad u(0,x) = f(x), \ x \in D.$$

$$(7)$$

Separation of variables gives the unique (classical) solution as

$$u(t,x) = \sum_{n=1}^{\infty} \bar{f}(n)\phi_{n}(x)M_{\beta}(-\lambda_{n}t^{\beta})$$

$$= E_{x}[f(W(Q(t)))I(\tau_{D}(W) > Q(t))]$$

$$= E_{x}[f(W(Q(t)))I(\tau_{D}(W(Q)) > t)]$$

$$= \frac{t}{\beta} \int_{0}^{\infty} T_{D}(I)f(x)g_{\beta}(tI^{-1/\beta})I^{-1/\beta - 1}dI$$

Joint work with Meerschaert and Vellaisamy, AOP (2009).

Analytic solution in intervals $(0, M) \subset \mathbb{R}$ was obtained by Agrawal (2002).

In this case, eigenfunctions and eigenvalues are

$$\phi_n(x) = \left(\frac{2}{M}\right)^{1/2} \sin(n\pi x/M), \quad \lambda_n = \frac{\pi^2 n^2}{M^2}$$

The time fractional diffusion on (0, M) has the solution

$$u(t,x) = \sum_{n=1}^{\infty} \bar{f}(n) \left(\frac{2}{M}\right)^{1/2} \sin(n\pi x/M) M_{\beta}(-\lambda_n t^{\beta})$$

here

$$M_{\beta}(z) = \sum_{k=0}^{\infty} \frac{z^n}{\Gamma(1+\beta n)}$$

For $\beta = 1$, $M_1(-z) = e^{-z}$, and u coincides with the solution of the heat equation on (0, M).

IBM in bounded domains

The (classical) solution of

$$\frac{\partial}{\partial t}u(t,x) = \frac{\Delta f(x)}{\sqrt{\pi t}} + \Delta^2 u(t,x), \quad x \in D, \quad t > 0;$$

$$u(t,x) = \Delta u(t,x) = 0, \quad t \ge 0, \quad x \in \partial D;$$

$$u(0,x) = f(x), \quad x \in D$$
(8)

is given by (running $I_2(t) = W_1(|W_2(t)|)$, IBM)

$$u(t,x) = E_x[f(I_2(t))I(\tau_D(W_1) > |W_2(t)|)]$$

= $2\int_0^\infty T_D(I)f(x)h(t,I)dI,$ (9)

where $T_D(I)$ is the heat semigroup in D, and h(t,I) is the transition density of one-dimensional Brownian motion $\{W_2(t)\}$. Proof: equivalence with fractional Cauchy problem for $\beta = 1/2$.

Extensions

Open problems

- Extension to Neumann boundary conditions...
- ▶ Extension to $\beta > 1$
- Extension to other operators: distributed order, Volterra-type integro-differential operators
- Work in progress for the Subordinated Brownian motions, e.g. symmetric stable process as the outer process....
- Applications-interdisciplinary research

Conclusion

- ► Math solves real world problems
- Probability is a useful area of Math in solving real world problems