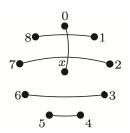
## What Are Graph Amalgamations?

Amin Bahmanian (Joint work with Chris Rodger) Auburn University Auburn AL, USA

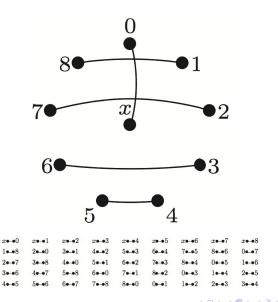
Graduate Student Seminar Auburn University, Auburn AL April 11, 2012

### **Factorizations**

Suppose we have been entrusted to draw up a schedule for the "Big Ten" football teams. Each weekend they are to divide into 5 pairs and play. At the end of 9 weeks, we want every possible pair of teams to have played exactly once.



## 1-factorization of $K_{10}$



## Sylvester's Problem

A set of  $\frac{n}{h}$  h-subsets which partition the n-set [n] is called a parallel class of h-subsets of [n].

#### Question (Sylvester, 1847)

Can the set of all h-subsets be partitioned into parallel classes of h-subsets?



James Joseph Sylvester (1814–1897) (Source: Wikipedia)

## Sylvester's Problem

#### Question (Sylvester, 1847)

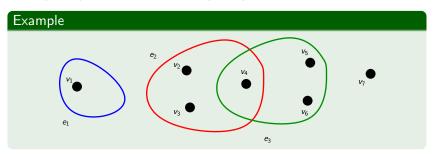
Can the set of all h-subsets be partitioned into parallel classes of h-subsets?



In 1877 Sylvester become the inaugural professor of mathematics at the new Johns Hopkins University in Baltimore, Maryland. His salary was \$5,000 (quite generous for the time), which he demanded be paid in gold.

## Hypergraphs

• A hypergraph  $\mathcal{G} := (V, E)$ , V is the vertex set, E is the edge (multi)set, every edge is a (multi)subset of V.



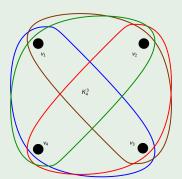
- r-factor: r-regular spanning,
- r-factorization: partition into disjoint r-factors,

## Complete Uniform Hypergraphs

•  $K_n^h = (V, {V \choose h})$ : a complete *h*-uniform hypergraph on vertex set V with |V| = n.

#### Example

 $K_4^3$ 



## Baranyai's Theorem

#### Theorem

 $K_n^h$  is r-factorizable if and only if h divides rn and r divides  $\binom{n-1}{h-1}$ .



(Source: http://www.kfki.hu)

Baranyai was a Hungarian mathematician who was also a professional recorder player. He toured Hungary with the Barkfark Consort giving concerts and died in a car accident on a country road after one of them.

## Baranyai's Theorem

#### **Theorem**

 $K_n^h$  is r-factorizable if and only if h divides rn and r divides  $\binom{n-1}{h-1}$ .



Zsolt Baranyai (1948-1978)

 $K_n^h$  is 1-factorizable if and only if h divides n. What if h doesn't divides n?

## Baranyai-Katona Conjecture

Let m be the least common multiple of h and n, and let a=m/h. Define

$$\mathcal{K} = \{\{1, \dots, h\}, \{h+1, \dots, 2h\}, \dots, \{(a-1)h+1, (a-1)h+2, \dots, ah\}\},\$$

where the elements of the sets are considered mod n. The families obtained from  $\mathcal{K}$  by permuting the elements of the underlying set [n] are called *wreaths*.

- If h divides n, then a wreath is just a partition.
- If gcd(n, h) = 1, then a wreath is a "Hamiltonian" cycle.

#### Conjecture

 $K_n^h$  can be decomposed into disjoint wreaths.

## Connectivity

#### Conjecture

 $K_n^h$  can be decomposed into disjoint wreaths.

In connection with Baranyai-Katona conjecture, Katona suggested the problem of finding a connected factorization for  $K_n^h$ .



(Source: http://www.renyi.hu/ohkatona)

## Connectivity

In connection with Baranyai-Katona conjecture, Katona suggested the problem of finding a connected factorization for  $K_n^h$ .

#### Theorem (B. 2011)

 $\lambda K_n^h$  is  $(r_1, \ldots, r_k)$ -factorizable if and only if h divides  $r_i n$  for  $1 \le i \le k$ , and  $\sum_{i=1}^k r_i = \lambda \binom{n-1}{h-1}$ . Moreover, for  $1 \le i \le k$ , if  $r_i \ge 2$ , we can guarantee that the  $r_i$ -factor is connected.

While this generalizes Baranyai's result in various ways, we note that the major difference is connectivity. In particular if  $\lambda=1$ , and  $h=r_1=\cdots=r_k=2$ , our result implies the classical result of Walecki that the edge set of  $K_n$  can be partitioned into Hamiltonian cycles if and only if n is odd.

## Some Special Cases

#### Corollary

 $K_n^h$  is connected 2-factorizable if and only if  $\binom{n-1}{h-1}$  is even, and h divides 2n.

#### Corollary

 $K_n^h$  is connected  $\frac{h}{\gcd(n,h)}$ -factorizable.

### Cameron's Problem

(1976) Under what conditions can partial 1-factorizations be extended to 1-factorizations?

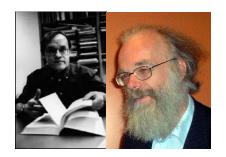


(Source: http://www.math.uregina.ca/bailey)

## When the partial edge-coloring is regular

#### Conjecture

(Baranyai-Brouwer-Schrijver (1976)) A 1-factorization of  $K_m^h$  can be extended to a 1-factorization of  $K_n^h$  iff h divides both m and n, and  $n \ge 2m$ .



(Source: http://techcn.com.cn, http://www.studeren.uva.nl)

(Baranyai-Brouwer- 1976) True for h = 2 and h = 3.

## Haggkvist-Hellgren Theorem (1993)

#### Theorem

Every proper  $\binom{m-1}{h-1}$ -edge-coloring of  $K_m^h$  can be embedded in a proper  $\binom{n-1}{h-1}$ -edge-coloring of  $K_n^h$  iff h divides both m and n, and  $n \geq 2m$ .



(Source: http://www.umu.se)

## Embedding *r*-factorizations

### Theorem (B. & Rodger, to appear in J. Graph Theory)

Suppose that  $n > 2m + \lfloor (1 + \sqrt{8m^2 - 16m - 7})/2 \rfloor$ . A q-hyperedge-coloring of  $\mathcal{F} = K_m^3$  can be embedded into an r-factorization of  $\mathcal{G} = K_n^3$  if and only if

- (i) 3 divides rn,
- (ii) r divides  $\binom{n-1}{2}$ ,
- (iii)  $q \leq {n-1 \choose 2}/r$ , and
- (iv)  $d_j(v) \le r$  for each  $v \in V(\mathcal{F})$  and  $1 \le j \le q$ .

#### Corollary

For  $n \ge (2 + \sqrt{2})m$  the embedding problem is completely solved.

## Embedding *r*-factorizations

### Theorem (B. & Rodger, to appear in J. Graph Theory)

A k-hyperedge-coloring of  $\mathcal{F} = K_m^3 \cup nK_m^2 \cup \binom{n}{2}K_m^1$  with  $V = V(\mathcal{F})$  can be extended to an r-factorization of  $\mathcal{G} = K_n^3$  if and only if

- (i) 3 divides rn,
- (ii) r divides  $\binom{n-1}{2}$ ,
- (iii)  $k = \binom{n-1}{2} / r$ ,
- (iv)  $d_j(v) = r$  for each  $v \in V$  and  $1 \le j \le k$ , and
- (v)  $|E^2(\mathcal{F}(j))| + 2|E^3(\mathcal{F}(j))| \ge r(m n/3)$  for  $1 \le j \le k$ .

## **Amalgamations**

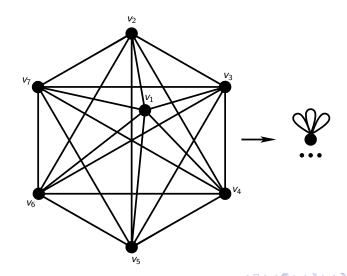
Amalgamating a hypergraph  $\mathscr{F}$  can be thought of as taking  $\mathscr{F}$ , partitioning its vertices, then for each element of the partition squashing the vertices to form a single vertex in the amalgamated graph  $\mathscr{G}$ .



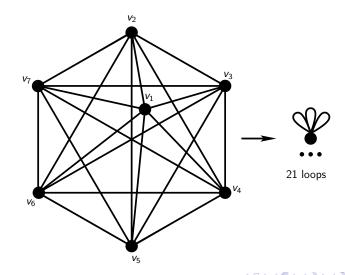


(Source: http://www.personal.reading.ac.uk/ smshiltn/, http://ocm.auburn.edu, http://www-history.mcs.st-andrews.ac.uk)

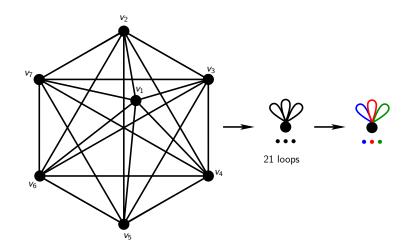
# Hamiltonian Decomposition of $K_7$ : Amalgamation (Hilton 1984)



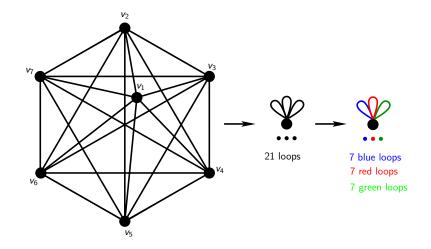
# Hamiltonian Decomposition of $K_7$ : Amalgamation (Hilton 1984)



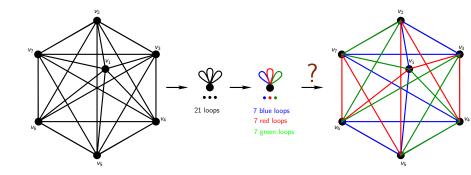
# Hamiltonian Decomposition of $K_7$ : Edge-coloring (Hilton 1984)



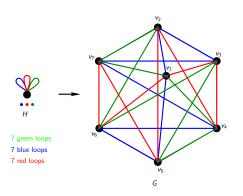
# Hamiltonian Decomposition of $K_7$ : Edge-coloring (Hilton 1984)



# Hamiltonian Decomposition of $K_7$ : Detachment (Hilton 1984)

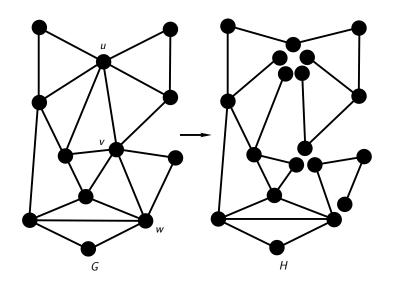


# Hamiltonian Decomposition of $K_7$ : Detachment (Hilton 1984)



- $d_{G(i)}(v_i) = 14/7 = 2$ .
- each color class is connected.

## Detachment



### A Fair Detachment Theorem

#### Theorem (B., Rodger, to appear in J. Graph Theory)

H: k-edge-colored,  $g: V(H) \to \mathbb{N}$ .  $\exists$  loopless g-detachment G of H such that for each distinct  $w, z \in V(H)$ ,  $\forall j \in \mathbb{Z}_k$ :

- (A1)  $d_G(u) \approx d_H(w)/g(w) \ \forall u \in \psi^{-1}(w);$
- (A2)  $d_{G(i)}(u) \approx d_{H(i)}(w)/g(w) \ \forall u \in \psi^{-1}(w);$
- (A3)  $m_G(u, u') \approx \ell_H(w)/\binom{g(w)}{2}$  when  $g(w) \geq 2 \ \forall u, u' \in \psi^{-1}(w)$ ;
- (A4)  $m_{G(i)}(u, u') \approx \ell_{H(i)}(w)/\binom{g(w)}{2}$  when  $g(w) \geq 2$ , (w),
- $\forall u, u' \in \psi^{-1}(w);$ (A5)  $m_G(u, v) \approx m_H(w, z)/(g(w)g(z))$  for every pair of distinct
- vertices  $w, z \in V(H)$ , each  $u \in \psi^{-1}(w)$  and each  $v \in \psi^{-1}(z)$ ; (A6)  $m_{G(i)}(u, v) \approx m_{H(i)}(w, z)/(g(w)g(z)) \ \forall u \in \psi^{-1}(w)$ ,
- $\forall v \in \psi^{-1}(z);$ (A7) If for some  $j \in \mathbb{Z}_k$ ,  $d_{H(j)}(w)/g(w)$  is an even integer for each  $w \in V(H)$ , then  $\omega(G(j)) = \omega(H(j)).$

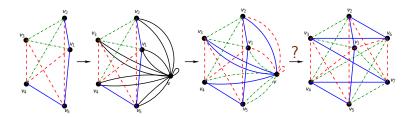
## **Applications**

#### Theorem

(Walecki)  $\lambda K_n$  is Hamiltonian decomposable (with a 1-factor leave, respectively) if and only if  $\lambda(n-1)$  is even (odd, respectively).

#### Theorem

(Hilton ) A k-edge-colored  $K_m$  can be embedded into a Hamiltonian decomposition of  $K_{m+n}$  (with a 1-factor leave, respectively) if and only if (m+n-1) is even (odd, respectively),  $k = \lceil (m+n-1)/2 \rceil$ , and each color class of  $K_m$  (except one color class, say k, respectively) is a collection of at most n disjoint paths, (color class k consists of paths of length at most n, at most n of which are of length n, respectively), where isolated vertices in each color class are to be counted as paths of length n.



## **Applications**

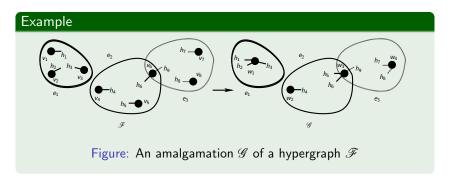
#### Theorem

 $\lambda K_n$  is  $(r_1, \ldots, r_k)$ -factorizable if and only if  $r_i n$  is even for  $1 \leq i \leq k$ , and  $\sum_{i=1}^k r_i = \lambda (n-1)$ . Moreover, for  $1 \leq i \leq k$  each  $r_i$ -factor can be guaranteed to be connected if  $r_i$  is even.

#### Theorem

A k-edge-coloring of  $K_m$  can be embedded into an  $(r_1, \ldots, r_k)$ -factorization of  $K_{m+n}$  if and only if  $r_i(m+n)$  is even for  $1 \le i \le k$ ,  $\sum_{i=1}^k r_i = m+n-1$ ,  $d_{K_m(i)}(v) \le r_{\sigma(i)}$  for each  $v \in V(K_m)$ ,  $1 \le i \le k$ , and some permutation  $\sigma \in S_k$ , and  $|E(K_m(i))| \ge r_{\sigma(i)}(m-n)/2$ .

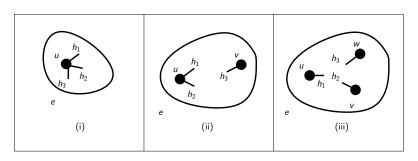
## Amalgamations of Hypergraphs, Hinge



 $\mathcal{F}$  is a detachment of  $\mathcal{G}$ .

## Notation

- $m(u^3)$ ,
- $m(u^2, v)$
- m(u, v, w).



### Theorem (B., to appear in J. Comb. Des.)

 $\Psi:V(\mathscr{G})\to V(\mathscr{F})$ :

 $i \in \{1, \ldots, k\}.$ 

 $\mathscr{F}\colon k ext{-edge-colored},\ hypergraph,\ g:V(\mathscr{F}) o\mathbb{N}.\ \exists\ a\ 3 ext{-uniform}$  g-detachment  $\mathscr G$  of  $\mathscr F$  with amalgamation function

- (A1)  $d_{\mathscr{G}}(u) \approx d_{\mathscr{F}}(x)/g(x)$  for each  $x \in V(\mathscr{F})$  and each  $u \in \Psi^{-1}(x)$ :
- (A2)  $d_{\mathscr{G}(j)}(u) \approx d_{\mathscr{F}(j)}(x)/g(x)$  for each  $x \in V(\mathscr{F})$ , each  $u \in \Psi^{-1}(x)$  and each  $j \in \{1, \dots, k\}$ ;
- (A3)  $m_{\mathscr{G}}(u,v,w)\approx m_{\mathscr{F}}(x,y,z)/\tilde{g}(x,y,z)$  for every  $x,y,z\in V(\mathscr{F})$  with  $g(x)\geq 3$  if x=y=z, and  $g(x)\geq 2$  if
- $|\{x,y,z\}| = 2$ , and every triple of distinct vertices u,v,wwith  $u \in \Psi^{-1}(x)$ ,  $v \in \Psi^{-1}(y)$  and  $w \in \Psi^{-1}(z)$ ;
- (A4)  $m_{\mathscr{G}(j)}(u, v, w) \approx m_{\mathscr{F}(j)}(x, y, z)/\tilde{g}(x, y, z)$  for every  $x, y, z \in V(\mathscr{F})$  with  $g(x) \geq 3$  if x = y = z, and  $g(x) \geq 2$  if  $|\{x, y, z\}| = 2$ , every triple of distinct vertices u, v, w with  $u \in \Psi^{-1}(x)$ ,  $v \in \Psi^{-1}(y)$  and  $w \in \Psi^{-1}(z)$  and each

### Theorem (B., to appear in Comb. Prob. Comp. )

$$\mathscr{F}$$
:k-edge-colored hypergraph,  $g:V(\mathscr{F})\to\mathbb{N}$ .  $\exists$  a  $g$ -detachment

(A1)  $d_{\mathscr{G}}(v) \approx d_{\mathscr{F}}(u)/g(u)$  for each  $u \in V(\mathscr{F})$  and each

 $\mathscr{G}$  of  $\mathscr{F}$  with amalgamation function  $\Psi:V(\mathscr{G})\to V(\mathscr{F})$ , st.

- $v \in \Psi^{-1}(u);$ (A2)  $d_{\mathscr{G}(j)}(v) \approx d_{\mathscr{F}(j)}(u)/g(u)$  for each  $u \in V(\mathscr{F})$ , each
- $v \in \Psi^{-1}(u)$  and  $1 \le j \le k$ ;
- (A3)  $m_{\mathscr{G}}(U_1,\ldots,U_r) \approx m_{\mathscr{F}}(u_1^{m_1},\ldots,u_r^{m_r})/\prod_{i=1}^r {g(u_i) \choose m_i}$  for distinct  $u_1,\ldots,u_r \in V(\mathscr{F})$  and  $U_i \subset \Psi^{-1}(u_i)$  with  $|U_i|=m_i \leq g(u_i)$  for  $1 \leq i \leq r$ :
- (A4)  $m_{\mathscr{G}(j)}(U_1,\ldots,U_r) \approx m_{\mathscr{F}(j)}(u_1^{m_1},\ldots,u_r^{m_r})/\prod_{i=1}^r {g(u_i) \choose m_i}$  for distinct  $u_1,\ldots,u_r \in V(\mathscr{F})$  and  $U_i \subset \Psi^{-1}(u_i)$  with  $|U_i|=m_i \leq g(u_i)$  for  $1\leq i\leq r$  and  $1\leq j\leq k$ .

## 2-edge-connected Fair Detachments

#### Theorem (B.)

Let  $\mathscr{F}$  be a k-edge-colored ( $\leq$  3)-hypergraph and let  $g:V(\mathscr{F})\to\mathbb{N}$  be a simple function. Then there exists a simple fair g-detachment whose color classes are all 2-edge-connected if and only if

$$\mathscr{F}(j)$$
 is 2-edge-connected for  $1 \le j \le k$ , and (1)

$$\frac{d_j(u)}{g(u)} \ge 2$$
 for each  $u \in V(\mathscr{F})$ , and  $1 \le j \le k$ . (2)

