ALGEBRA PRELIMINARY EXAMINATION

May 21, 2005

I. GROUPS

Do problems 1 and 2 and any two of the remaining four.

- 1. State and prove the Second Isomorphism Theorem.
- 2. Construct (up to isomorphism) all abelian groups of order 500. Where in your list is \mathbb{Z}_{500} ? Explain your answer.
- 3. Prove each of the following statements.
 - (a) A group of order 2005 is not simple.
 - (b) A group of order p^2 , p a prime, is abelian.
- 4. Let a and b be elements in a group G of finite orders m and n respectively. Prove that if m and n are relatively prime, then the order of ab is mn.
- 5. Recall that the center Z(G) of a group G is defined by

$$Z(G) = \{ g \in G : ga = ag \text{ for all } a \in G \}.$$

Prove that Z(G) is a normal subgroup of G and that if G/Z(G) is cyclic, then G is abelian.

6. State Cauchy's Theorem and prove it without using any of the Sylow Theorems.

II. RINGS AND MODULES

Do problems 7 and 8 and any two of the remaining four. Throughout this section, R denotes a ring with identity $1 \neq 0$ and all R-modules are unitary left R-modules.

- 7. Show that every nonzero prime ideal of a PID is maximal.
- 8. Regard \mathbb{Q} and the polynomial rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ as additive abelian groups (*i.e.* \mathbb{Z} -modules). Prove that

$$\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[x] \cong \mathbb{Q}[x]$$

as abelian groups. (*Hint.* You may assume that the mapping $r : \mathbb{Q} \times \mathbb{Z}[x] \to \mathbb{Q}[x]$ given by r(q, f) = qf is a surjective balanced map and that every element of $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[x]$ can be written in the form $q \otimes f$ for some $q \in \mathbb{Q}$ and $f \in \mathbb{Z}[x]$.)

- 9. Give an example of a UFD that is not a PID and explain why your example works.
- 10. If R is commutative, sketch a proof of the fact that $r \in R$ is nilpotent if and only if r is contained in every prime ideal of R.
- 11. Prove that if every R-module is injective, then every R-module is projective
- 12. If $f: A \to A$ is an *R*-module homomorphism with ff = f, prove that

$$A = Ker f \oplus Im f$$

III. FIELDS AND GALOIS THEORY

Do problems 13 and 14 and any two of the remaining four.

- 13. Prove that every finite field extension is algebraic.
- 14. Give an example of an algebraic field extension that is not finite and explain why your example works.
- 15. Suppose that $K \subseteq F$ is an algebraic field extension and that D is an integral domain with $K \subseteq D \subseteq F$. Prove that D is a field.
- 16. Sketch a proof of the fact that every finite group G is isomorphic to the Galois group of some finite Galois extension $K \subseteq F$.
- 17. In each case, give a specific example of a *finite* field extension $K \subseteq F$ that satisfies the given condition. Briefly justify your answers.
 - (a) $K \subseteq F$ is a separable extension, but is not Galois.
 - (b) F is a splitting field over K for some irreducible polynomial $f \in K[x]$, but $K \subseteq F$ is not Galois.
- 18. Suppose that p is a prime and that K and F are finite fields with $|K| = p^m$ and $|F| = p^n$ for some positive integers m and n. Show that F has a subfield isomorphic to K if and only if m | n. (*Hint.* For the harder implication, recall that $\mathbb{Z}_p \subseteq F$ is a finite Galois extension with cyclic Galois group and use the Fundamental Theorem.)