Invariants

$G = \text{group acting on a space } X.$

G acts on the complex-valued functions on X by:

$$g^*(f)(x) = f(g^{-1}(x)).$$

This operation preserves the algebra operations on functions - addition and multiplication.

A function f on X is \textit{invariant} if it is unchanged by the action.

Because of the algebra-preserving properties of g^*, the sum of two invariant functions is again invariant, and the product of two invariant functions is again invariant. Of course, constant functions are invariant, so also, a constant multiple of an invariant function is invariant. We say that the invariant functions form an \textit{algebra}.

The basic problem of invariant theory is to describe this algebra.

\textbf{Geometric motivation:} Knowing the invariants gives information on the G-orbits:

If two points are in the same orbit, they will give the same values for all invariants.

Thus the invariants help to separate the orbits.
Examples:

Rotating Conic Sections.

The group of rotations of \mathbb{R}^2 is the set of matrices

$$\rho_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

If $F(x, y) = Ax^2 + 2Bxy + Cy^2$ is a homogeneous quadratic polynomial, then the equation $F(x, y) = 1$ defines a conic section. By an appropriate rotation, F can be put in the standard form

$$\rho_\theta^* F = \frac{x^2}{a^2} \pm \frac{y^2}{b^2}.$$

However, it can be shown that the quantity $AC - B^2$ is invariant under rotations. So we have

$$AC - B^2 = \pm \frac{1}{ab}.$$

This shows:

i) The curve $F(x, y) = 1$ is a hyperbola if $AC - B^2 < 0$, and is an ellipse if $AC - B^2 > 0$ (and $A > 0$).

ii) When the curve is an ellipse, the area of the interior of the ellipse is

$$Area = \pi ab = \pi \frac{1}{\sqrt{AC - B^2}}.$$

Moral: Invariants carry interesting geometric information.
Coefficients of the Characteristic Polynomial.

The general linear group GL_n of all invertible $n \times n$ matrices acts on the space M_n of matrices by conjugation:

$$\gamma_g(T) = gTg^{-1}. \quad g \in GL_n; T \in M_n$$

The coefficients of the characteristic polynomial

$$\det(T - \lambda I) = \sum_{\ell=1}^{n} (-1)^{\ell} c_{\ell}(T) \lambda^{\ell}$$

are invariant under the conjugation action γ.

Key result of linear algebra: the characteristic polynomial of T determines the eigenvalues of T.

Theorem: The coefficients c_{ℓ} of the characteristic polynomial generate the algebra of polynomial invariants for GL_n acting on M_n by conjugation.
Four Stages of Classical Invariant Theory

1. Weyl's Fundamental Theorems.

2. Transfer to the Weyl Algebra; Dual Pairs; Generalized Spherical Harmonics

3. Seesaw pairs; Reciprocity Laws and Reciprocity Algebras

4. Kernel of the Harmonic Decomposition
The Classical Groups

1. The general linear group GL_n.

This is the group of invertible $n \times n$ matrices, or equivalently, the group of all invertible linear transformations of an n-dimensional vector space V.

It acts on $V \cong \mathbb{C}^n$, consisting of column vectors of length n, by the usual row-by-column multiplication. It also acts on the space $(\mathbb{C}^n)^*$ of row vectors $\lambda = (y_1, y_2, y_3, \ldots, y_n)$ again essentially by row-by-column multiplication, but with a slight modification:

$$g^*(\lambda) = \lambda g^{-1}$$

There is a natural pairing $\alpha : V \times V^* \rightarrow \mathbb{C}$, given by

$$\alpha(\vec{v}, \vec{\lambda}) = \vec{\lambda}(\vec{v}) = \vec{\lambda} \cdot \vec{v},$$

where \cdot indicates row-by-column matrix multiplication. This pairing is invariant for the action of $GL(V)$ on the two spaces:

$$g^*(\vec{\lambda})(g(\vec{v})) = \vec{\lambda}(\vec{v}),$$

for all $g \in GL_n$, $\vec{v} \in \mathbb{C}^n$ and $\vec{\lambda} \in (\mathbb{C}^n)^*$.
Let $B(\vec{x}, \vec{y})$ be an symmetric inner product on a vector space V. For example, if $V = \mathbb{R}^n$, and

\[
\vec{x} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{bmatrix}, \quad \text{and} \quad \vec{y} = \begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n
\end{bmatrix},
\]

then we could take

\[
B_\circ(\vec{x}, \vec{y}) = \langle \vec{x}, \vec{y} \rangle = x_1y_1 + x_2y_2 + \ldots + x_ny_n = \sum_{j=1}^{n} x_jy_j
\]

that is, the standard Euclidean inner product. We could extend this to \mathbb{C}^n by the same formula. We assume that B is non-degenerate, in the sense that, for any \vec{x}, there is some \vec{y} such that $B(\vec{x}, \vec{y}) \neq 0$.

The orthogonal group O_B is the group of all linear transformations g that preserve B, in the sense that

\[
B(g(\vec{x}), g(\vec{y})) = B(\vec{x}, \vec{y})
\]

for all pairs of vectors \vec{x} and \vec{y} in V.

For the standard inner product,

\[
O_{B_\circ} = \{ g \in GL_n : gg^T = I_n \},
\]

where g^T denotes the usual matrix transpose of g.

\[
\]
3. The symplectic group Sp_{2n}.

We can consider, instead of a symmetric bilinear form, a skew-symmetric one. For this to be non-degenerate requires the dimension to be even. Thus on \mathbb{R}^{2n}, we can consider the non-degenerate, skew-symmetric (= symplectic) bilinear form

$$\langle \vec{x}, \vec{y} \rangle = \sum_{j=1}^{n} x_j y_{n+j} - x_{n+j} y_j = B_0(\vec{x}, J\vec{y}),$$

where

$$J = \begin{bmatrix} 0_n & -I_n \\ I_n & 0_n \end{bmatrix},$$

where 0_n and I_n are respectively the $n \times n$ zero matrix, and the $n \times n$ identity matrix. Then the symplectic group Sp_{2n} is the set of isometries g, of the form $\langle \cdot, \cdot \rangle$, in the sense that

$$\langle g(\vec{x}), g(\vec{y}) \rangle = \langle \vec{x}, \vec{y} \rangle,$$

again for all \vec{x} and \vec{y} in \mathbb{R}^{2n}. Here, it does not matter if the field of scalars is \mathbb{R} or \mathbb{C}, or whatever, there is only one symplectic group in a given dimension.
The classical actions

The action of $G = GL_n$, or O_n, or Sp_{2n} on the vector space V used to define it is called the standard action of G. We can let G also act on V^m, the sum of m copies of V, by the coordinate-wise action. If $V \cong \mathbb{C}^n$, then we can think of V^m as the $n \times m$ matrices, with each of m columns constituting a copy of V. Then the action of G on V^m can be accomplished by ordinary matrix multiplication (on the left).

We can also let G act on the dual space V^*, as described above for the general linear group.

By a classical action of G, we mean the action of G on a direct sum $V^p \oplus (V^*)^q$. For the orthogonal and symplectic groups, it is easy to show that the actions of G on V and on V^* are equivalent, so it is not necessary to use any copies of V^*.

Note that:

i) The direct sum of two classical actions is again a classical action.

ii) The dual of a classical action is again a classical action.
Stage I

Weyl’s First Fundamental Theorem

Invariants for Classical Actions.

Weyl’s First Fundamental Theorem says:

the obvious invariants are all the invariants.

More precisely:

Let $G = GL(V)$ act on $Y = Y_{p,q} = V^p \oplus (V^*)^q$. Write $\vec{z} = (\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_p, \vec{\lambda}_1, \vec{\lambda}_2, \ldots, \vec{\lambda}_q)$. Then

$$r_{ab}(\vec{z}) = \vec{\lambda}_a(\vec{x}_b)$$

will be invariant for the action of $GL(V)$ on Y. In the usual coordinates on Y, this will be a quadratic function. Because of the invariance of the pairing between V and V^*, the r_{ab} will be invariant under the action of GL_n on V.

Similarly, if $G = O_B$, then for $\vec{z} = (\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_p)$, define

$$r_{ab} = B(\vec{x}_a, \vec{x}_b).$$

For obvious reasons, this will be an invariant for the action of O_B on V^p. As in the case of GL_n, the r_{ab} will be

In a parallel fashion, we can also define functions r_{ab} for the action of Sp_{2n} on V^p, where here $V = \mathbb{C}^{2n}$, using the symplectic pairing, and these r_{ab} will again be quadratic functions in the coordinates on V^p, and will be invariant for the action of Sp_{2n}.

First Fundamental Theorem of Invariants:

Let Y be a classical action of the classical group G. Let r_{ab} denote the quadratic invariants defined above. Then the full algebra $P(Y)^G$, of polynomials on Y that are invariant under G, is generated by the r_{ab}.
The Yoga of Lie Groups

A Lie group G is a group that is also a smooth manifold. (and right and left translations are smooth maps)
The Lie algebra g of G is the tangent space to G at 1, the identity element. (also describable as left invariant vector fields)
The Lie algebra has a canonically defined skew-symmetric bilinear product (aka bracket operation):

$$[\cdot,\cdot] : g \times g \to g$$

There is canonical map (the exponential map):

$$\exp : g \to G$$

For each x in g, the group elements $\exp(tx)$, for real numbers t, form a one-parameter group:

$$\exp(sx)\exp(tx) = \exp((s + t)x).$$

Given a representation of G (a homomorphism $\rho : G \to GL(V)$ on a vector space V, we get a (derived) representation $d\rho$ of g by

$$d\rho(x) = \frac{d}{dt}\rho(\exp(tx))|_{t=0}.$$

This preserves bracket:

$$[d\rho(x),d\rho(y)] = d\rho(x)d\rho(y) - d\rho(y)d\rho(x) = d\rho([x,y]).$$

Moreover, $d\rho$ determines ρ (on the identity component of G) by the recipe

$$\rho(\exp(tx)) = \exp(t d\rho(x)),$$

where the second exp is the standard exponential map on matrices:

$$\exp A = I + A + \frac{A^2}{2} + \frac{A^3}{6} + \ldots + \frac{A^k}{k!} + \ldots$$

Thus, we can move back and forth between:

representations of a (connected) Lie group

and

representations of its Lie algebra.
Background on the Weyl Algebra

The Weyl Algebra, IA: the CCR

Key insight of Heisenberg:

At the microscopic level, the operations of measuring momentum and position are not interchangeable - they do not commute with one another.

Instead, Heisenberg proposed that, if p_j are the momenta of the particles in a system, and q_j are the positions, that (in a sanitized, unitfree form for mathematicians)

$$[p_j, q_k] = p_j q_k - q_k p_j = \delta_{jk} I,$$

where δ_{jk} is Kronecker’s delta, and I is the identity operator.

These are the Heisenberg Canonical Commutation Relations (CCR).
The Weyl Algebra, IB: representing the CCR

The coordinate functions x_j generate the algebra $P(C^n)$ of polynomial functions on the vector space C^n. They can be regarded as operators on $P(C^n)$ by multiplications.

In a similar fashion, the operators

$$D_k = \frac{\partial}{\partial x_k}$$

of partial differentiation in the coordinate directions, generate the algebra $S(C^n)$ of all translation-invariant differential operators on C^n. These also act on $P(C^n)$.

The operators x_j and D_k together generate the algebra of all polynomial coefficient differential operators on $P(C^n)$. We call this algebra $W(C^n) = W_n$, the Weyl algebra.
The CCR can be formulated more geometrically. Let $X_n = X =$ linear span of the x_j, and $Y_n = Y =$ linear span of the D_j, and $W_n = W = X \oplus Y$.

The commutator defines a bilinear product of W_n to itself, and this product is skew-symmetric. The relations (CCR) say that the commutator of any two element of W_n will be a scalar operator - a multiple of the identity. Thus we can write

$$[w, w'] = \langle\langle w, w' \rangle\rangle \iota,$$

where ι denotes the identity operator on $P(\mathbb{C}^n)$. The function $\langle\langle w, w' \rangle\rangle$ is easily checked to be a symplectic (= bilinear, skew-symmetric, non-degenerate) form on W_n.

The CCR exactly capture the structure of W, in the following sense:

Theorem: The Weyl algebra W of polynomial coefficient differential operators is the universal associative algebra generated by W, subject to the CCR.
The Weyl Algebra, II: Conjugation by GL_n

GL_n acts on $P(C^n)$ according to the general formula on page 3. The operators of GL_n do not belong to W_n, but the associated infinitesimal action of the Lie algebra $gl_n \simeq M_n$, the $n \times n$ matrices, does belong to W_n. Call the action α. A calculation shows that if $T = \{t_{kj}\}$ is an $n \times n$ matrix, and p is a polynomial, then

$$\alpha(T)(p) = -\sum_{j,k=1}^{n} t_{kj} x_j D_k(p)$$

Although GL_n does not belong to W_n, it does act on W_n by conjugation: If L is a polynomial coefficient differential operator, and g is in GL_n, then

$$Adg(L) = g^* L(g^{-1})^*$$

is again a polynomial coefficient differential operator. The action Adg preserves addition and multiplication in W_n: it is an action by algebra automorphisms.

Remark: A differential operator L is invariant for Adg if and only if

L commutes with the action of g on $P(C^n)$.

Thus, if $G \subset GL_n$ is a group, the space

$$(W_n)^{AdG}$$

of AdG-invariant differential operators

is exactly the algebra of all differential operators that commute with G acting on $P(C^n)$.
The Weyl Algebra, II: Conjugation by GL_n, cont.

More specifically $Ad g$ will preserve the spaces X and Y of multiplication by linear functions, and directional derivatives. We have

$$Y_n \cong \mathbb{C}^n, \quad \text{and} \quad X_n \cong (\mathbb{C}^n)^*$$

as GL_n modules under Ad.

The infinitesimal action $ad = dAd$ of the Lie algebra gl_n on W_n derived from Ad is just commutator with the operators $\alpha(T)$ described above:

if

$$ada(T)(L) = [\alpha(T), L] = \alpha(T)L - L\alpha(T),$$

for T in gl_n, then

$$ada(T) = dAd(T),$$
The Weyl Algebra, III: Associated Graded Structure

The fact that the commutators of elements of \(W \) are scalar operators propagates through the spaces \(W^{(k)} \) of length \(k \) products, so that commutators are shorter than they might be:

\[
[W^{(k)}, W^{(\ell)}] \subset W^{(k+\ell-2)}.
\]

This means that, if we form the quotients

\[
\tilde{W}^{(k)} = \frac{W^{(k)}}{W^{(k-1)}},
\]

then the algebra

\[
\tilde{W} = \bigoplus_{k=0}^{\infty} \tilde{W}^{(k)}
\]

is commutative.

Remark: This is called the associated graded algebra.

In fact,

\[
\tilde{W} \simeq P(W)
\]

Tracing through all the identifications leads to:

The action \(Ad \) of \(GL_n \) on \(W_n \) factors to an action \(\tilde{Ad} \) on \(\tilde{W}_n \),

which in turn is isomorphic to the standard action of \(GL_n \) on \(P(C^n \oplus (C^n)^*) \).

In particular, this is a classical action.
The Weyl Algebra, IV: the metaplectic Lie algebra

The CCR imply that
\[W_n^{(1)} = W_n + C = h_n \]
is a Lie algebra. It is 2-step nilpotent, with center = \(C \). It is the Heisenberg Lie algebra.

The CCR also imply that \(W^{(2)} \) is closed under commutator, i.e. is a Lie algebra. Further,
\[[W^{(2)}, W^{(1)}] \subset W^{(1)}. \]
That is, \(W^{(2)} \) normalizes \(h_n \).

Refinement:
Let \(S^2(W) \subset W^{(2)} \) be the linear span of all symmetrized products (aka anticommutators)
\[ww' + w'w, \quad \text{for } w, w' \text{ in } W. \]

Straightforward calculations with CCR show:

i) \(S^2(W_n) \) is a complement to \(h_n \) in \(W_n^{(2)} \): \(W_n^{(2)} = S^2(W_n) \oplus h_n. \)

ii) \(S^2(W_n) \) is a Lie algebra: \([S^2(W_n), S^2(W_n)] \subset S^2(W_n). \)

iii) \(S^2(W_n) \) normalizes \(W_n \) inside \(h_n \): \([S^2(W_n), W_n] \subset W_n. \)

Moreover,

iv) \(\text{ad}: S^2(W_n) \to End(W_n) \) given by taking brackets, identifies \(S^2(W_n) \) with the Lie algebra of \(Sp(W_n) \), where \(Sp(W_n) \) is the group of isometries of the commutator symplectic form \(<< , >> \).
The Weyl Algebra, IV: the metaplectic Lie algebra, cont.

We call $S^2(W)$ the metaplectic Lie algebra. We write

$$S^2(W) = mp_{2n} = mp.$$

The decomposition $W = X \oplus Y$ implies

$$S^2(W) \simeq S^2(X) \oplus \{X,Y\} \oplus S^2(Y) = mp^{(2,0)} \oplus mp^{(1,1)} \oplus mp^{(0,2)}.$$

Concretely,

i) $mp^{(2,0)}$ consists of second order polynomials, and is spanned by $x_j x_k$.

ii) $mp^{(0,2)}$ consists of second order partial derivatives, and is spanned by $D_k D_j$.

iii) $mp^{(1,1)}$ is spanned by symmetrized products $\{D_k, x_j\} = D_k x_k + x_j D_k = 2x_j D_k + \delta_{jk}$.

The elements of $mp^{(1,1)}$ are almost the infinitesimal vector fields coming from $ad gl_n$, but there is an extra constant term.

They will have the same commutator action on W_n as do the operators from $ad gl_n$.

Stage II

Duality for Classical Actions

\(G = \) a classical group. Let \(\gamma : G \to GL_n \) be a classical action.

Then \(\text{Ad} \circ \gamma \) is the action by \(\gamma(G) \) on the differential operators by conjugation.

As noted, \(W_{n}^{\text{Ad} \gamma (G)} = \) algebra of differential operators commuting with the action of \(\gamma(G) \).

This will factor to an action \(\hat{\text{Ad}} \circ \gamma \) of \(G \) on \(\hat{W} \simeq P(W) \).

\(\gamma \) a classical action \(\implies \hat{\text{Ad}} \circ \gamma \) is also a classical action.

Hence Weyl’s FFT \(\implies \) the invariants for \(\hat{\text{Ad}} \circ \gamma(G) \) will be generated by the quadratic invariants.

This result pulls back to the Weyl algebra to give;

Theorem: If \(\gamma(G) \subset GL_n \) is a classical action, then \(W_{n}^{\text{Ad} \gamma (G)} \) is generated by the the Lie subalgebra

\[
g' = m_{p_{2n}}^{\text{Ad} \gamma (G)} \subset mp_{2n}
\]

that centralizes \(\gamma(G) \) inside \(mp_{2n} \).
Example: Spherical Harmonics

Let $G = O_{B_0} = O_n$, and $V \cong \mathbb{C}^n = \text{standard action for } G$.

The centralizing Lie algebra in mp_{2n} is spanned by

\[r^2 = \sum_{j=1}^{n} x_j^2, \quad \Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}, \quad \tilde{E} = \sum_{j=1}^{n} \{D_j, x_j\} = 2 \left(\sum_{j=1}^{n} x_j \frac{\partial}{\partial x_j} \right) + n \]

Then

\[\Delta : P^d(\mathbb{C}^n) \to P^{d-2}(\mathbb{C}^n). \]

\[\ker \Delta \subset P^d(\mathbb{C}^n) = H^d(\mathbb{C}^n) = \text{harmonic polynomials of degree } d. \]

For this case, the duality theorem says:

Theorem: (Theory of Spherical Harmonics)

i) $H^d(\mathbb{C}^n)$ is an irreducible representation of O_n.

ii) Every polynomial p in $P(\mathbb{C}^n)$ can be written uniquely as a sum

\[p = \sum_{\ell \geq 0} q_\ell (r^2)^\ell \]

of products of harmonic polynomials with powers of r^2.

Experience has shown:

Even if you are only interested in invariant functions,

you must also study how other functions transform under the action of a group.

This leads to the notion of representation of a group.

A representation \((\rho, V)\) of a group \(G\) on a vector space \(V\) is a group homomorphism

\[
\rho : G \rightarrow GL(V).
\]

Representation theory is a non-commutative analog of spectral theory.

Dictionary:

- invariant subspace \(\leftrightarrow\) subrepresentation
- eigenvector \(\leftrightarrow\) minimal invariant subspace \(=\) irreducible subrepresentation
- eigenvalues \(\leftrightarrow\) equivalence of subrepresentations
- eigenspace \(\leftrightarrow\) isotypic component

Main differences:

1. Irreducible representations are not simply specified by a number;

 they are a priori mysterious, and must be discovered.

2. Irreducible representations can have arbitrarily large dimension.

More precisely . . .
Key notions of Representation Theory

i) intertwining operator/\(G\)-morphism
ii) equivalence of representations.
iii) subrepresentation.
iv) irreducible representation.
v) (direct) sum of representations.

i): Given representations \((\rho, V)\) and \((\sigma, U)\) of \(G\),

an intertwining operator from \(V\) to \(U\) is a linear mapping

\[L : V \rightarrow U \]

such that

\[\sigma(g)L = L\rho(g), \text{ for all } g \text{ in } G. \]

ii) \((\rho, V)\) and \((\sigma, U)\) are equivalent

if there is an intertwining operator \(L : V \rightarrow U\)

that is an isomorphism of vector spaces.

iii): If there is an intertwining operator \(L : V \rightarrow U\)

that is one-to-one, then \(\rho\) is (equivalent to)

a subrepresentation of \(\sigma\).

If \(\{0\} \neq L(V) \neq U\), then \(\rho\) is a proper subrepresentation of \(\sigma\).

iv): If \(\sigma\) has no proper subrepresentations, it is irreducible.

(Equivalence classes of) irreducible representations of \(G\) = “atoms of symmetry” for \(G\) = \(\hat{G}\).

Goal 1: Describe the equivalence classes of irreducible representations = \(\hat{G}\).

Goal 2: Decompose a given representation into a sum of irreducible representations.
Tensor Products, Isotypic Components, Commutants, Burnside’s Theorem, I

Form the tensor product $U \otimes V$ of vector spaces U and V.

Embed the algebra $\text{End}(U)$ of matrices on U into $\text{End}(U \otimes V)$ by
$$\alpha(T)(u \otimes v) = T(u) \otimes v.$$
Similarly, embed the algebra $\text{End}(V)$ of matrices on V into $\text{End}(U \otimes V)$ by
$$\beta(S)(u \otimes v) = u \otimes S(v).$$

Given an (associative) algebra $A \subset \text{End}(X)$, the commutant of A is
$$A' = \{ T \in \text{End}(X) : ST = TS, \text{ for all } S \in A \}$$

Pre-Burnside Theorem: The subalgebras $\alpha(\text{End}(U))$ and $\beta(\text{End}(V))$ are mutual commutants in $\text{End}(U \otimes V)$.

Also,
$$\alpha \otimes \beta : \text{End}(U) \otimes \text{End}(V) \longrightarrow \text{End}(U \otimes V)$$
is an isomorphism.
Tensor Products, Isotypic Components, Commutants, Burnside’s Theorem, II

Given:

\begin{align*}
\text{a representation } (\sigma, U) \text{ of } G \text{ on } U, \\
\text{and} \\
\text{irreducible } (\tau, W) \text{ in } \hat{G},
\end{align*}

the \textit{isotypic component} for \(\tau \) in \(\sigma \) is

the sum of all subrepresentations \(U_1 \subset U \) that are equivalent to \(\tau \).

For each such sub representation, \(U_1 \), there is an intertwining isomorphism

\[L_1 : W \to U_1 \subset U. \]

Set

\[U_\tau \text{ (aka } \sigma_\tau \text{)} = \tau\text{-isotypic component of } U \text{ (or of } \sigma). \]

\(H_{om_G}(W, U) = G\text{-intertwining operators from } W \text{ to } Z. \)

\textbf{Theorem:} The natural (evaluation) mapping

\[W \otimes H_{om_G}(W, U) \to U_\tau \]

is an isomorphism.
Tensor Products, Isotypic Components, Commutants, Burnside’s Theorem, III

Given a group G and a representation ρ, V of G, one wants to find invariant subspaces. If a subspace U is invariant under operators $\rho(g)$ and $\rho(g')$, it will also be invariant under the product $\rho(g)\rho(g') = \rho(gg')$. Thus, U will be invariant under the algebra generated by taking all linear combinations of elements of G. So we subsume the problem of looking for sub representations for a group G into the analogous problem for subalgebras A of the $n \times n$ matrices.

To look for subspaces invariant under the algebra A, it can be helpful to find operators S that commute with A. In particular, given such an operator S, all the eigenspaces of S will be invariant under A. So we look for operators that commute with A. The collection of all such is another algebra, denoted A', and called the commutant of A. If we can find A', we could look for $(A')' = A''$, the double commutant of A. It is easy to check that $A \subset A''$. They might be equal, but they might not. This process could continue, but it turns out that $A''' = A'$ always. So if $A = A''$, the pairs of algebras (A, A') form a pair of mutual commutants. There is a famous theorem of Burnside that describes what happens in this situation, if we assume that A is semisimple, in the sense that V is a sum of irreducible subrepresentations of A.

Burnside’s Theorem: If $A \subset M_n(C)$ is a semisimple subalgebra, then A' is also semisimple. Moreover, there is a canonical decomposition

$$V = \sum_j U_j$$

such that:

i) Each U_j is invariant under A and under A'.

ii) The joint action of A and A' on U_j is irreducible.

iii) Any two A-invariant irreducible subspaces of U_j are equivalent as representations of A; same for A'.

iv) If V_j is an A-irreducible subspace of U_j, and V'_j is an A'-irreducible subspace of U_j, then $V_j \leftrightarrow V'_j$ defines a bijection of representations of A and of A'.

v) $U_j \simeq V_j \otimes V'_j$.

Moral:
Finding the isotopic decomposition for (ρ, V) and finding the commutant of $\rho(G)$ are closely related.
Let G and G' be two groups. Let (ρ, V) and (ξ, Y) be representations of G and G' respectively. Then $(\rho \otimes \xi, V \otimes Y)$ defined by

$$\rho \otimes \xi(g, g') (\vec{v} \otimes \vec{y}) = (\rho(g)(\vec{v}) \otimes \xi(g')(\vec{y}))$$

defines a representation $\rho \otimes \xi$ of $G \times G'$.

Theorem: The mapping

$$(\rho, \xi) \rightarrow \rho \otimes \xi$$

defines a bijection

$$\otimes : \hat{G} \times \hat{G}' \rightarrow (\hat{G} \times \hat{G}')$$
Theorem of the Highest Weight, I

$G = \text{classical group (over } \mathbb{C})$: \[G \supset B \supset U; \quad B = A \cdot U, \]
where:

i) B is a maximal connected solvable group.

ii) $U = \text{commutator subgroup of } B = \text{maximal unipotent subgroup of } G$.

iii) $A = \text{maximal diagonalizable subgroup of } B$.

A character of A is a homomorphism $\psi : A \to \mathbb{C}^\times$.

If (ρ, V) is a representation of A, and \vec{v} in V is an A-eigenvector, then

$$\rho(a)(\vec{v}) = \psi(a)\vec{v},$$

where ψ is a character of A.

The collection of all characters of A is \hat{A}: it is an abelian group.
Theorem of the Highest Weight, II

Example: $G = GL_n$: Then

- B = group of (invertible) upper triangular matrices.
- U = group of unipotent (all 1s on diagonal) upper triangular matrices.
- A = group of (invertible) diagonal matrices:

 $$A = \left\{ a = \begin{bmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{bmatrix} \right\}$$

Characters of A have the form $\psi = \psi_m$, where $m = (m_1, m_2, m_3, \ldots m_n)$ is an n-tuple of integers, and $\psi_m: a \rightarrow \Pi_{j=1}^{n} a_j^{m_j}$

In particular, $A^m \simeq \mathbb{Z}^n$.
Theorem of the Highest Weight, III

Theorem: Let \((\rho, V)\) be a representation of \(G\). Then

1) The space \(V^U\) of \(U\)-invariant vectors is non-zero.

2) \(V^U = \sum_{\psi \in \hat{A}} (V^U)^{(A,\psi)}\) can be decomposed into \(A\)-eigenspaces.

3) \(V\) irreducible \(\Rightarrow \dim V^U = 1\); and the \(A\)-character of \(V^U\) determines \(V\) up to equivalence.

Remark: The characters of \(A\) that appear as highest weight vectors is a subsemigroup of \(\hat{A}\), called the semigroup of *dominant* characters (or dominant weights). It is denoted \(\hat{A}^+\).

For \(G = GL_n\) the dominant weights are the \(\psi_\ell\) with descending entries: \(\ell_j \geq \ell_{j+1}\).
Theorem of the Highest Weight, IV, Diagram Notation

Given

\[L = (\ell_1, \ell_2, \ell_3, \ldots, \ell_m) \]

= sequence of decreasing, non-negative integers.

For any \(n \geq m \), regard \(L \) as defining a dominant character of \(A_n \), by extending \(L \) with \(n - m \) zeroes.

Also, let \(L \) specify a diagram \(D_L = D \), consisting of left-justified rows of boxes, of lengths \(\ell_j \).

Then, for a diagram \(D \) consisting of \(m \) rows, we have for any \(n \geq m \), an associated irreducible representation \(\rho_n^D \) of \(GL_n \).

This is diagram notation.

There is a compatible* way of labeling \(\widehat{Sp}_{2n} \) and \(\widehat{O}_n \) with diagrams.

*For each irreducible representation \(\sigma \) of \(Sp_{2n} \), there is an irreducible representation \(\rho_{2n}^D \) such that \(D \) has at most \(n \) rows, and the highest weight vector of \(\rho_{2n}^D \), under the action of \(Sp_{2n} \), generates a representation equivalent to \(\sigma \). We write \(\sigma = \sigma^D \). A similar but more complicated procedure works for \(O_n \).
Stage II

Duality for Classical Actions

G is a classical group. Let $\gamma: G \to GL_n$ be a classical action. Then $Ad \circ \gamma$ is the action by $\gamma(G)$ on the differential operators by conjugation.

As noted, $W_n^{Ad\gamma(G)} = \text{algebra of differential operators commuting with the action of } \gamma(G)$. This will factor to an action $\tilde{Ad} \circ \gamma$ of G on $\tilde{W} \simeq P(W)$.

γ a classical action $\implies \tilde{Ad} \circ \gamma$ is also a classical action. Hence Weyl’s FFT \implies the invariants for $\tilde{Ad} \circ \gamma(G)$ will be generated by the quadratic invariants.

This result pulls back to the Weyl algebra to give:

Theorem: If $\gamma(G) \subset GL_n$ is a classical action, then $W_n^{Ad\gamma(G)}$ is generated by the Lie subalgebra $g' = mp_{2n}^{Ad\gamma(G)} \subset mp_{2n}$ that centralizes $\gamma(G)$ inside mp_{2n}.

Extension of the reasoning of Burnside’s Theorem \implies

Corollary:

$$P(C^n) \simeq \sum_D \sigma_D \otimes \tau_D,$$

where

$\sigma_D \in \hat{G}, \quad \tau_D \in \hat{g'},$

and

$\sigma_D \leftrightarrow \tau_D$

is one-to-one.
Duality for Classical Actions, cont.

Using the structure
\[g' = g' \cap mp_{2n}^{(2,0)} \oplus g' \cap mp_{2n}^{(1,1)} \oplus g' \cap mp_{2n}^{(0,2)} \]
we get:

Theorem: Let \(H(G, \gamma) = \cap \Delta \) for \(\Delta \) in \(g'^{(0,2)} \).

Let \(J = P(C^n)^{\gamma(G)} \) be the algebra of invariants for \(\gamma(G) \) (which is generated by \(g'^{(2,0)} \)).

Let \(G'^{(1,1)} \) be the centralizer of \(\gamma(G) \) in \(GL_n \).

Then

i) (Harmonic Decomposition)

\[P(C^n) = H(G, \gamma) \cdot J. \]

ii) (Harmonic Duality)

\[H(G, \gamma) \simeq \sum D \sigma_D \otimes \rho_D, \]

where

\[D = \text{as before,} \quad \text{and} \quad \rho_D \in \widehat{G'^{(1,1)}}. \]

Remark: \(G'^{(1,1)} \) is always a (product of) general linear group(s).
Dual Pairs

The duality theorem above relates representations of a classical group G to representations of a commuting Lie algebra g'. In fact, the situation is in a suitable sense symmetric. The Lie algebra of g is embedded in mp_{2n}, and each of g and g' is the centralizer of the other in mp_{2n}. We could also consider the group Sp_{2n} whose Lie algebra is mp_{2n}, and look at the subgroups G and G' whose Lie algebras are g and g' respectively. Then either of G or G' is the centralizer of the other inside Sp_{2n}.

We call the pairs (g, g') and (G, G') of mutual centralizers dual pairs.

In what follows, we will talk about dual pairs in Sp_{2n}, but may actually be referring to some variant. All dual pairs in Sp_{2n} arise via classical actions. Subject to a notion of irreducibility, there are two kinds of dual pairs in $Sp_{2n}(\mathbb{C})$:

$$(O_n, Sp_{2m}) \subset Sp_{2nm}, \quad (GL_n, GL_m) \subset Sp_{2nm}.$$

In $Sp_{2n}(\mathbb{R})$, one must consider various real forms of these pairs.
Stage III

See-Saw Pairs and Reciprocity

Suppose $H \subset G$, and $\gamma : G \to GL_n$ is a classical action such that $\gamma |_H$ is a classical action for H. Then $G = \gamma(G)$ and $H = \gamma(H)$ belong to dual pairs (G, G') and (H, H') in Sp_{2n}. We can put them in a diagram like this:

\[
\begin{array}{ccc}
G & \leftrightarrow & H' \\
\cup & \quad & \cup \\
H & \leftrightarrow & G'
\end{array}
\]

This diagram suggests the term see saw pair of dual pairs. This idea is due to S. Kudla.

Reciprocity for See-Saw Pairs: (Numerical version) If the duality correspondences for (G, G') and (H, H') are

\[
\sigma_D \leftrightarrow \tau_D \quad \text{and} \quad \tilde{\sigma}_E \leftrightarrow \tilde{\tau}_E,
\]

then the multiplicity with which $\tilde{\sigma}_E$ appears the restriction to H of σ_D equals the multiplicity with which τ_D appears in the restriction to G' of $\tilde{\tau}_E$.

Remark: There is an elegant version of this theorem in terms of multigraded algebras.

Examples: If $H \subset G$ is a symmetric subgroup – the fixed points of an involution – then the restriction of a classical action of G to H will also be classical.
Symmetric Pairs and Bott Periodicity

There are 10 classes of symmetric pairs. These 10 can be organized into 5 see-saw pairs. These pairs fit nicely with Bott Periodicity in K-theory.

The Real Periodicity Cycle

\[
\begin{array}{c}
Sp_{2m}/GL_m \to \to Gl_n/O_n \\
\uparrow & \downarrow \\
((Sp_{2n} \times Sp_{2n})/Sp_{2n}) \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \to O_{p+q}/(O_p \times O_q) \\
\uparrow & \downarrow \\
Sp_{2(p+q)}/(S_{2p} \times Sp_{2q}) \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \to (O_n \times O_n)/O_n \\
\leftarrow & \leftarrow \\
GL_{2n}/Sp_{2n} \leftarrow \leftarrow \to O_{2m}/GL_m
\end{array}
\]

The symmetric pairs on each line correspond to each other via seesaw reciprocity.

The Complex Periodicity Cycle

\[
(GL_n \times GL_n)/GL_n \leftarrow \leftarrow \to GL_{p+q}/(GL_p \times GL_q)
\]
Reciprocity and Branching for Symmetric Pairs

For a subgroup H of a group G, the decomposition of irreducible representations of G into irreducible representations for H is called a branching law. Branching laws are one of the basic problems of representation theory.

ia) Decomposition of tensor products $G \subset G \times G$, as the diagonal subgroup. For GL_n, the multiplicities are given by a combinatorial rule first described by Littlewood and Richardson, and are known as Littlewood-Richardson coefficients.

ib) The Littlewood-Richardson rule can be proved using representation theory and reciprocity between $(GL_n \times GL_n, GL_n)$ and $(GL_{p+q}, GL_p \times GL_q)$. (First representation-theory based proof.)

ii) By using appropriate reciprocity laws, all branching rules for classical symmetric pairs (G, H) can be described in terms of Littlewood-Richardson coefficients.
Stage IV

Fine Structure of the Harmonic Decomposition

A key part of the theory of spherical harmonics is the uniqueness of the decomposition of a general polynomial into a sum of harmonics times powers of r^2. In general, the duality theorem guarantees that any polynomial is a sum of products of (G, γ) harmonics with $\gamma(G)$ invariants. However, in general, this decomposition is not unique. It is unique when g', or equivalently, the number of copies of the standard module of G, is relatively small. This is known as the stable range. However, as g' grows for a fixed G, eventually uniqueness fails. This means that the mapping

$$\mu : H(G, \gamma) \otimes J \rightarrow P(\mathbb{C}^n)$$

induced by multiplication in $P(\mathbb{C}^n)$ has a non-trivial kernel. It is then a natural question, to describe the kernel.

This question has proved fairly resistant. It seems to require understanding of the structure of the individual factors $H(G, \gamma)$ and J. Of course, J is an algebra. Let $I(J)$ denote the ideal in $P(\mathbb{C}^n)$ generated by $J(2)$, the quadratic generators of J. The harmonic decomposition says that the quotient mapping

$$H(G, \gamma) \rightarrow P(\mathbb{C}^n)/I(J)$$

is a linear isomorphism. Thus, we may think of $H(G, \gamma)$ as an algebra by pullback of structure from $P(\mathbb{C}^n)/I(J)$.

There has been recent progress in understanding the structure of $H(G, \gamma)$ and of J.

Theorem $H(G, \gamma)$ and J (nearly) have flat deformations to Hibi rings. In particular, each of $H(G, \gamma)$ and J has a standard monomial theory.

Corollary: $H(G, \gamma) \otimes J$ has a standard monomial theory.
What is Standard Monomial Theory?

Abstract Rough Version

Standard monomial theory is the expression of a ring as an “almost direct sum” of polynomial rings.

I.e, the collections of all monomials in certain subsets of generators form a basis for the ring.
Example: Hodge’s standard monomial theory for GL_n (modern version), I

The Flag Algebra.

$G =$ reductive group (over \mathbb{C}).

$U = U_G =$ maximal unipotent subgroup,

$A_G = A =$ maximal torus normalizing U.

$\hat{A} =$ group of (regular) characters of A

$\hat{A}^+ =$ semigroup of dominant characters of A.

The Theorem of the Highest Weight, combined with Frobenius Reciprocity, implies that:

$$R(G/U) = \text{(ring of) regular functions on } G/U$$

\[\cong \sum_{\rho \in \hat{G}} V_{\rho} \]

\[= \sum_{\psi \in \hat{A}^+} V_{\psi}. \]

The V_{ψ} are the eigenspaces for the right action of A.

Thus, $R(G/U) = \hat{A}$-graded algebra.
Example: Hodge’s standard monomial theory for GL_n (modern version), II

Consider the subset $\Gamma_n \subset \mathbb{Z}^2$, with the standard partial order:

\[
\Gamma_6 =
\begin{array}{ccccccc}
& & & & & & * \\
* & & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
\end{array}
\]

Then $R^+ (GL_n/U_n)$ has a flat deformation to the semigroup ring of all

order-preserving

non-negative

integer-valued

functions on Γ_n

Aka, the Hibi cone on Γ_n.
Hibi Cones

Let Γ be a partially ordered set (poset). ($\succeq = \text{the order relation}$.)

$R_\Gamma = \text{real-valued functions on } \Gamma.$

$(R^+_\Gamma) = \text{non-negative real-valued functions on } \Gamma.$

$R^{\Gamma,\succeq} = \text{order-preserving real-valued functions on } \Gamma.$

$(R^+_\Gamma)^{\Gamma,\succeq} = R^{\Gamma,\succeq} \cap (R^+_\Gamma).$

$Z_\Gamma = \text{integer-valued functions on } \Gamma.$

$(Z^+_\Gamma) = Z \cap (R^+_\Gamma).$

$Z^{\Gamma,\succeq} = Z \cap R^{\Gamma,\succeq};$ $(Z^+_\Gamma)^{\Gamma,\succeq} = Z \cap (R^+_\Gamma)^{\Gamma,\succeq}.$

$(Z^+_\Gamma)^{\Gamma,\succeq}$ is a lattice cone.

The Hibi ring attached to Γ is

$C((Z^+_\Gamma)^{\Gamma,\succeq}),$ the semigroup ring of $(Z^+_\Gamma)^{\Gamma,\succeq}.$

The structure of $(Z^+_\Gamma)^{\Gamma,\succeq}$ affords an explicit description

of the generators and relations for the associated Hibi ring.
Structure of $(\mathbb{Z}^+)_{\Gamma, \succeq}$.

Recall Γ_C^+ (= Hibi cone for a total ordering.)

Let $TO(\Gamma, \succeq) =$ collection of total orderings of Γ compatible with (i.e. that extend) the partial order \succeq.

Then

i) $(\mathbb{Z}^+)_{\Gamma, \succeq} = \bigcup_{\succeq_j \in TO(\Gamma, \succeq)} (\mathbb{Z}^+)_{\Gamma, \succeq_j}$.

ii) For each \succeq_j in $TO(\Gamma, \succeq)$, $(\mathbb{Z}^+)_{\Gamma, \succeq_j} \simeq C_{D_n}$ (with $n = \#(\Gamma)$).

Given poset Γ, let $INC(\Gamma) =$ collection of all increasing subsets of Γ.

$INC(\Gamma)$ is closed under taking unions and intersections.

$INC(\Gamma)$ is ordered by inclusion. $\Gamma \hookrightarrow INC(\Gamma)$.

Note: $TO(\Gamma, \succeq) \leftrightarrow$ maximal chains $\subseteq INC(\Gamma)$.

Then

i) $C(\mathbb{Z}^+\Gamma, \succeq)$ is generated by the characteristic functions χ_B, for increasing subsets $B \subset \Gamma$.

ii) Defining relations are $\chi_B + \chi_{B'} = \chi_{B \cup B'} + \chi_{B \cap B'}$.

iii) For each $\succeq_j \in TO(\Gamma), \quad C((\mathbb{Z}^+\Gamma, \succeq_j))$ is a polynomial subring of $C(\mathbb{Z}^+\Gamma, \succeq)$.

iv) $C((\mathbb{Z}^+\Gamma, \succeq_j))$ is generated by χ_B, for B in the maximal chain of \succeq_j in $INC(\Gamma)$.

v) $C(\mathbb{Z}^+\Gamma, \succeq) = \text{almost direct sum of } C((\mathbb{Z}^+\Gamma, \succeq_j))$.
The kernel of m

(case of GL_n on $V^p \oplus (V^*)^q$).

Theorem: The obvious elements generate $\ker m$.

More precisely:

Consider the matrix

$$
\begin{bmatrix}
 r_{11} & r_{21} & r_{31} & \cdots & r_{p1} & y_{11} & y_{21} & y_{31} & \cdots & y_{n1} \\
 r_{12} & r_{22} & r_{23} & \cdots & r_{2p} & y_{12} & y_{22} & y_{32} & \cdots & y_{n2} \\
 r_{13} & r_{23} & r_{33} & \cdots & r_{p3} & y_{21} & y_{21} & y_{31} & \cdots & y_{n1} \\
 & \cdots \\
 & \cdots \\
 & \cdots \\
 & \cdots \\
 r_{1q} & r_{2q} & r_{3q} & \cdots & r_{pq} & y_{1q} & y_{2q} & y_{3q} & \cdots & y_{nq} \\
 x_{11} & x_{12} & x_{13} & \cdots & x_{1p} & 0 & 0 & 0 & \cdots & 0 \\
 x_{21} & x_{22} & x_{23} & \cdots & x_{2p} & 0 & 0 & 0 & \cdots & 0 \\
 x_{31} & x_{32} & x_{33} & \cdots & x_{3p} & 0 & 0 & 0 & \cdots & 0 \\
 & \cdots \\
 & \cdots \\
 & \cdots \\
 x_{n1} & x_{n2} & x_{n3} & \cdots & x_{np} & 0 & 0 & 0 & \cdots & 0
\end{bmatrix}
$$

Lemma: This matrix has rank n.

Theorem: (w/ Soo Teck Lee) The kernel of m is generated by the determinants of the $(n+1) \times (n+1)$ submatrices.