Exocrine Pancreas

- Acini - Pancreatic juice
- (1°)
- (2°)
- Secretions- neuronal and hormonal mechanisms
 1) Secretin - bicarbonate rich
 2) Cholecystokinin - enzyme rich

Endocrine Pancreas

- Islets of Langerhans (contain 4 cell types)
 - Alpha cells (α)- produce Glucagon (20-25%)
 - Beta cells (β)- produce Insulin (60-70%)
 - Delta cells (δ)- produce Somatostatin (10%)
 - F-cells- produce pancreatic polypeptide (few)

EMBRYOLOGY

1st- Islets of Langerhans
2nd- Acinar cells

History of Investigation

- Aristotle
- Von Mering and Minkowski
- Schultze
- Banting and Best

Insulin Synthesis

- Ribosomes
- Rough ER (proinsulin)
- Golgi Apparatus
- B cell- Islet of Langerhans secretes insulin
- Endocrine- Insulin to Bloodstream

GENERAL STATEMENT

INSULIN SECRETION IS STIMULATED UNDER CIRCUMSTANCES OF FUEL EXCESS AND INHIBITED UNDER CIRCUMSTANCES OF FUEL DEFICIENCY
Factors Influencing Insulin Secretion

- Elevated Plasma Glucose
 - most profound stimulus
 - biphasic response by pancreas

- Elevated Plasma Amino Acids
- Elevated Plasma Fatty Acids
- Gastrointestinal hormones (anticipatory)
 - Glucagon-like Peptide (GLP-1)
 - Gastric Inhibitory Peptide

- Autonomic Nervous System
 - Parasympathetic stimulation increases secretion
 - Sympathetic decreases insulin secretion

- Somatostatin (GHIH)
 - Inhibits insulin secretion

Actions of Insulin

Carbohydrate Metabolism
Acts to decrease plasma glucose
- initiates or enhances glucose transport into most cells (muscle*, fat, not liver, brain) by increasing the availability of the carrier molecule (GLUT-4)
- Stimulates activity of glucokinase
- stimulates glycogenesis especially of liver and skeletal muscle
- inhibits glycolysis
- inhibits gluconeogenesis

*Not required in exercising skeletal muscle.

Fat Metabolism
Acts to stimulate the production and storage of fat
- enhances transport of glucose into adipocytes
- converts glucose derivatives into fatty acids
- enhances transport of fatty acids into adipocytes
- inhibits hormone sensitive lipase which hydrolyses fats (lipoprotein lipase)
- inhibits β-oxidation of fatty acids

Protein Metabolism
Acts much like Growth Hormone
- enhances ribosomal protein synthesis (anabolic action)
- enhances active transport of amino acids into cells
- decreases protein catabolism
Actions of Insulin
Other Actions

- Increases movement of potassium from extracellular fluid to intracellular fluid.
- Decreases activity of neuropeptide-Y.

GLUCAGON

- Major site of action is liver.
- Antagonistic to insulin.

Actions of Glucagon

Carbohydrates
- Enhances glycogenolysis.
- Enhances gluconeogenesis.

Fats
- Enhances biolysis and beta oxidation.

Proteins
- Enhances uptake of Gluconeogenesis precursors in liver.

Glucagon Regulation

- Decreased plasma glucose concentration.
- Elevated plasma amino acids.
- Sympathetic nervous system.
- Somatostatin and insulin (as paracrine secretions) decrease glucagon secretion.

Other Pancreatic Hormones

1) Somatostatin
- Stimuli—same as insulin.
- Actions
 - Decrease gut motility and secretions.
 - Decrease insulin and glucagon secretions.
 - Puts "break" on rate at which meal is being digested and absorbed.

2) Pancreatic Polypeptide
- Stimuli
 - Ingestion of protein-rich meal, hypoglycemia. Exercise.
- Actions
 - Inhibit gall bladder and exocrine pancreas.

Diabetes Mellitus

Type I (IDDM)
- 10-20%
- juvenile onset
- rapid progression
- not obesity related
- result of viral disease which causes T-cells to destroy β-cells
- insulin level = 0
- ketosis

Type II (NIDDM)
- 80-90%
- adult onset
- slow progression
- typically obese
- not well known possibly due to down-regulation of insulin receptors
- insulin high, low, normal
- no ketosis

Symptoms
- hyperglycemia
- polyuria
- polydipsia
- polyphagia
- ketoacidosis
- hyperlipemia

Pathologies
- neuropathies
- nephropathies
- microangiopathies
- macroangiopathies
- decreased bld vol
- retinopathies
- other visual problems
PHARMACOLOGY

- Simulate increased production
 - GLUCOTROL

- Decrease hepatic output
 - GLUCOPHAGE

- Drugs which increase insulin sensitivity
 - AVANDIA

- Mimics Incretins (g.i hormones which dec bld glucose)
 - BYETTA

PHARMACOLOGY

- Insulin
 - HUMALOG (insulin lispro)
 - NOVOLOG (insulin aspart)
 - LANTUS (insulin glargine)
 - EXUBERA (human insulin)