
ORIGINAL PAPER

Dealing with collinearity in behavioural and ecological data:
model averaging and the problems of measurement error

Robert P. Freckleton

Received: 1 January 2010 /Revised: 10 August 2010 /Accepted: 10 August 2010 /Published online: 14 September 2010
# Springer-Verlag 2010

Abstract There has been a great deal of recent discussion
of the practice of regression analysis (or more generally,
linear modelling) in behaviour and ecology. In this paper,
I wish to highlight two factors that have been under-
considered, collinearity and measurement error in predic-
tors, as well as to consider what happens when both exist
at the same time. I examine what the consequences are for
conventional regression analysis (ordinary least squares,
OLS) as well as model averaging methods, typified by
information theoretic approaches based around Akaike’s
information criterion. Collinearity causes variance inflation
of estimated slopes in OLS analysis, as is well known. In
the presence of collinearity, model averaging reduces this
variance for predictors with weak effects, but also can
lead to parameter bias. When collinearity is strong or
when all predictors have strong effects, model averaging
relies heavily on the full model including all predictors
and hence the results from this and OLS are essentially
the same. I highlight that it is not safe to simply eliminate
collinear variables without due consideration of their
likely independent effects as this can lead to biases.
Measurement error is also considered and I show that
when collinearity exists, this can lead to extreme biases
when predictors are collinear, have strong effects but
differ in their degree of measurement error. I highlight

techniques for dealing with and diagnosing these prob-
lems. These results reinforce that automated model
selection techniques should not be relied on in the
analysis of complex multivariable datasets.

Keywords Regression .Model selection . Information
theory

Introduction

In many respects, the ‘gold standard’ in hypothesis testing
in behaviour, ecology and evolutionary biology is the
randomised experiment, in which factors of interest are
manipulated over a range of values. When examining the
effects of different factors simultaneously, randomised
experiments allow the effects of each of the variables
examined to be isolated and measured individually
through fully factorial designs (e.g. Grafen and Hails
2002; Ruxton and Colgrave 2002). The framework for
statistical testing of data from designed experiments is
extremely comprehensive and sophisticated (Sokal and
Rohlf 1995).

In many situations, however, experimental approaches
cannot be used and alternative methods are required. For
instance, long-term monitoring (e.g. Leigh and Johnston
1994) and comparative analyses of data across groups of
species (e.g. Harvey and Pagel 1991) are examples of
commonly employed approaches to data gathering that do
not usually use experimental methods. In general, observa-
tional approaches use data that are gathered passively
without manipulation, and rely on natural variation in the
variables of interest. If the natural variation in the system is
large enough, then statistical analyses can be used to
examine the effects of factors of interest. Statistical analyses
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(usually regression analysis or linear modelling) are
performed as if this variation had been created through
experimental manipulation with the aim of determining
underlying causal relationships.

The downsides of observational approaches are twofold.
First, confounding variables may be responsible for
generating observed patterns, which may lead to incorrect
conclusions. For example, spatial or temporal autocorrela-
tion (Haining 1990; Chatfield 1996), or phylogenetic non-
independence (Felsenstein 1988; Harvey and Pagel 1991)
are well-known confounding factors in the analysis of
behavioural and ecological data.

The second problem is that in complex datasets with a
range of predictors, there is frequent correlation between
the predictors. For instance, in climate data from temper-
ate regions it is often found that hot summer weather is
accompanied by dry conditions, and hence rainfall is low
when temperatures are high. Consequently, it is difficult to
disentangle the effects of temperature and rainfall using
data that are gathered under normal conditions. In
regression analysis, collinearity of this sort among
predictors can generate problems of analysis and interpre-
tation. Thus, a variable of interest may correlate strongly
with several predictors; however, if these predictors are
correlated, the independent effects of each may be hard to
disentangle (e.g. see Freckleton et al. 1998 for an example
in a regression context). This problem is one that is difficult
to address and to effectively deal with, and that I discuss in
this paper.

One of the most straightforward ways to deal with
collinear variables is to use a data reduction method such as
principal components or factor analysis (Draper and Smith
1998; Quinn and Keough 2002). For instance, in the
hypothetical example, above summer temperature and
rainfall is the product of prevailing weather conditions
and thus a single summary variable (e.g. the first principal
component) may accurately represent the data. However,
often the correlated variables may be expected to have
independent effects: as a hypothetical example, plant
growth increases with temperature, but decreases with
decreasing rainfall. However, if temperature and rainfall
are negatively correlated as outlined above, a single axis
would not allow the countervailing effects of these two
variables to be disentangled. An alternative approach uses
diagnostics and adjustments based on propensity scores
(Rosenbaum and Rubin 1983) to account for imbalances in
observational studies when the assignment of observations
amongst groups is non-random, potentially yielding biases
akin to those resulting from collinearity in regression. For
fitting regression models, other approaches exist such as
ridge regression and various shrinkage techniques (Draper
and Smith 1998; see below for model averaging based on
Akaike’s information criterion (AIC)-information theoretic

(IT) which is a shrinkage method). These improve parameter
estimates, or estimates of variance to account for collinearity
when fitting single models. However, it is in fact the case
(although not always widely appreciated) that least squares
estimates of statistical model parameters are robust to
moderate and even high levels of collinearity (Draper and
Smith 1998). Estimates of parameter variance may, however,
be very sensitive affecting hypothesis tests.

The problem of collinearity is particularly an issue in
model selection (e.g. Grafen and Hails 2002). In model
selection, the aim is to find a model with the best fit to data
with not too many parameters. However, if predictors are
correlated, models with different predictors may have
similar fits to data. This is a problem that is particularly
important when using automated techniques, causing them
to identify suboptimal models as the ‘best’.

For problems in model analysis in behaviour and
ecology, interest has focussed on model averaging
(Burnham and Anderson 1998, 2002; Rushton et al.
2004; Link and Barker 2006; Johnson and Omland 2004).
Model averaging recognises that there are two forms of
uncertainty in modelling. The first is the uncertainty in
parameter estimates, for example measured by standard
errors and confidence intervals for parameters. The second
source of uncertainty is in the model: usually the ‘true’
model is unknown, and there is a probability that each
candidate model is the ‘true’ model. This probability can
be measured and incorporated as a source of uncertainty.
There are many ways to perform model averaging; a
recent comprehensive review is that of Claeskens and
Hjort (2008). In ecology, the methods of Burnham and
Anderson (1998, 2002) based on AIC have become widely
used. Model averaging uses information on the fit of all
models to data, not just the best-fitting model. The
contribution of each model to the final analysis depends
on its relative fit, with better fitting models playing a
greater role than poor-fitting ones. However, the conse-
quences of collinearity for model averaging methods are
not clear.

Least squares methods should yield unbiased parameter
estimates even in the presence of moderate amounts of
collinearity. This is because least squares estimates can be
shown to be the best linear unbiased estimators (BLUE) for
a given model. It is possible to show with simulations (e.g.
Freckleton 2002, below) that this means that ordinary
multiple regression is relatively insensitive to collinearity,
probably more than most researchers imagine. However,
this result is dependent on the predictors being measured
without error. If measurement error in predictors exists,
biases result in parameter estimates with the bias increasing
with the amount of measurement error (Carroll et al. 2006).
If different levels of measurement error exist in collinear
variables, this will affect the outcome. One might expect
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differences in measurement errors to be common: for
instance, temperature will be proportionately much more
accurately measured using a thermometer than rainfall is
using a rain gauge.

In this paper, I wish to highlight two issues. First, that
ordinary least squares (OLS) and model-averaging methods
can perform well in the presence of even quite high levels
of collinearity, with model-averaging methods out-
performing OLS approaches under certain conditions.
However, high or different levels of collinearity between
predictors, or different measurement errors between these
alter this conclusion, and yield problems for both methods:
this is the real problem of collinearity in ecological data
analysis. If measurement errors are appreciable, then these
should be quantified and the possible effects can be
modelled.

Methods

Linear model

Here, I consider a simple model for collinear data. The data
(y) consist of n observations of yi and are modelled as a
function of predictors x1 and x2. x1 and x2 are assumed to
have been standardised. The data model is then:

y ¼ aþ b1x1 þ b2x2 þ ey ð1Þ
The effects of the two predictors are assumed to be

linear and are modelled by the parameters b1 and b2.
Without losing generality I set a=0, but included this as an
estimated parameter in the statistical models below
(because it would be unknown in reality). ey is an error
term, where each observation has an associated error ei.
This is assumed to be normally distributed with zero mean
and variance 1� b1ð Þ2 þ 1� b2ð Þ2. This is a standard
linear model, and the mathematical theory for such models
is well developed. In the simulations described below, I
define β=b2/b1, i.e. β is the ratio of the effect of x2 relative
to that of x1.

Collinearity

In order to model collinearity I assumed that the two
predictors are correlated, according to a simple linear
model:

x
»
2 ¼ rx1 þ ex ð2Þ

The asterisk denotes that the value of this predictor is
unstandardised. x2 was standardised before entering into
Eq. 1. r is the correlation between the two predictors, and ex
is normally distributed with zero mean and variance (1–r)2.

Observation model

Linear models assume that the predictors are measured with
no error. In reality, this assumption is often not correct. In
order to model parameter error, I denote xobs1 and xobs2 as the
measured values of x1 and x2, respectively. These are then
related to the true values by:

xobs1 ¼ x1 þ e1
xobs2 ¼ x2 þ e2

ð3Þ

where, e1 and e2 are normally distributed with zero mean
and variances s2

1 and s2
2, respectively.

Model fitting

Two approaches to fitting models were contrasted. First a
linear model including both predictors was fitted using
OLS and estimated parameters were recorded from each
simulation.

Second, an information–theoretic approach based on
Akaike’s information criterion was used (Burnham and
Anderson 1998, 2002; Burnham et al. 2010). I used the
methods described by Burnham and Anderson (2002). The
approach compares the fits of a suite of candidate models
using AIC. The absolute size of the AIC is unimportant;
instead, the difference in AIC values between models
indicates the relative support for the different models. In
order to compare models, I calculated an “Akaike weight”,
wi for each model. For a set of R models, the wi sum to 1
and have a probabilistic interpretation: of these models, wi

is the probability that model i would be selected as the best
fitting model if the data were collected again under
identical circumstances.

Because the wi are probabilities, it is possible to sum
these for models containing given variables (Burnham and
Anderson 2002). For instance, if one considers some
variable k, one can calculate the sum of the Akaike weights
of all the models including k, and this is the probability that
of the variables considered, variable k would be in the best
approximating model were the data collected again under
identical circumstances.

Model averaging uses the average of parameter estimates
or model predictions from each candidate model, weighted
by its Akaike weight. For parameter bj, the model averaged
estimate was calculated as:

bj ¼
XR
i¼1

wi
bbþj;i ð4Þ

In which, wi is the Akaike weight of model i, and bbþj;i is
the estimate of bj if predictor j is included in model i, or is
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zero otherwise. In the simulation analysis, there are four
models that are included in this model averaging procedure:

Model 1: y=a
Model 2: y ¼ aþ b1x1
Model 3: y ¼ aþ b2x2
Model 4: y ¼ aþ b1x1 þ b2x2

In this example, the set of models was minimised;
however in practice, the set may be expanded to consider
interactions between variables, or more complex models
containing additional predictors. A specific problem with
doing this is that the problems of collinearity will be
magnified by adding models including interactions between
collinear variables, as the interaction term would necessar-
ily also be highly collinear.

Simulations

I conducted a series of simulations to demonstrate the
effects of collinearity and measurement error in the
predictors on parameter estimates and their sampling
variances. To examine the effect of collinearity, I set b1 at
a value of 0.5, a moderate effect. I set n=100 as this is a
value typical of that used in many comparative analyses.
The value of β was set at zero (no effect of predictor 2) or
1.5 (a stronger effect of predictor 2 than predictor 1). The
correlation between the predictors, r, was then varied
between 0 and 1. At each parameter combination, I
conducted 10,000 simulations and in each case recorded
the fitted parameter estimates, generated using the two
methods described above.

To illustrate the impacts of measurement error, I repeated
the above simulations but adding measurement error to
predictor 1. I simulated error in this way as the aim was to
demonstrate how the effect of unquantified error in one
predictor could lead to mistaken inferences about the effects
of other predictors. The measurement error standard
deviation of e1 was set at 0.5.

Example data

In order to illustrate how model averaging and OLS
methods might perform in a dataset containing collinearity,
I performed an analysis of the “foxes” dataset from Grafen
and Hails (2002). This is apparently a dataset on factors that
influence overwinter survival in foxes, which is a function
of average individual weight. Thirty groups were studied
and data recorded on the size of the group, the availability
of food, the area of each territory, as well as the average
weight of foxes in each group. Two of the potential
predictors, group size and food availability are strongly
correlated with each other (r=0.88, P<0.0001), so that
collinearity is an issue in this dataset. Models were fit and

model-averaged parameter estimates generated as described
above. Model-averaged estimates of parameter variances
were generated using the formula in Burnham and
Anderson (2002) and Anderson (2008).

Results

Collinearity and model averaging versus OLS

The broad difference in the performance of OLS and model
averaging methods is illustrated with an example in Fig. 1.
Figure 1 shows how increasing the degree of collinearity
between the predictors affects sampling distributions for one
set of parameter values in which the effect of one parameter
is nil and the other has a stronger effect. If OLS is used to
estimate model parameters, then the estimated mean value is,
on average, unbiased, irrespective of whether the predictors
are uncorrelated (Fig. 1a), moderately correlated (Fig. 1b) or
strongly correlated (Fig. 1c). However, as is well known, the
sampling variance is affected by collinearity, becoming large
as the degree of collinearity increases.

Figure 1d–f shows what happens to the parameter
estimates using the AIC-IT approach in this example. For
zero and moderate levels of correlation, the parameter
estimates are unbiased and the sampling distributions can be
narrower than for those obtained using the OLS approach
(Fig. 1d, e). However, when the correlation between the
predictors is strong, the parameter estimates become biased,
with the effect of the weak predictor being over-estimated
and that of the strong predictor under-estimated (Fig. 1f)

These results are generalised in Figs 2 and 3. Figure 2
shows two cases, one where one predictor has zero effect
and the other a stronger effect, as in Fig 1 (Fig. 2a, b). In
the other case, both predictors have strong effects (Fig. 2c,
d). As described above, parameter estimates are essentially
unbiased using the OLS approach (Fig. 2a, c). When one of
the predictors is weak, the parameter estimates become
slightly biased for high collinearity when estimated using
the AIC-IT approach (Fig. 2b). However, when the effects
of both parameters are strong, the estimates obtained from
the AIC-IT approach are unbiased and the general pattern is
the same as that obtained using the OLS approach. The
relationship between parameter estimates and sampling
variance is summarised in Fig. 3. When the correlation
between predictors is low to moderate, the sampling
variance of estimates from the AIC-IT method is lower
for the zero predictor than for the others (Fig. 3a). On the
other hand, when both predictors have strong effects, the
sampling variance is similar at low to moderate correlations
for all methods.

The differences between the performance of the methods is
relatively straightforward to understand. When the effect of x1
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is strong and that of x2 is weak, model averaging tends to
give higher weight to model 2 and low weights to models 1,
3 and 4. The estimates of b2 in models 3 and 4 are
downweighted (using the weighting scheme in Eq. 4) and
consequently the estimates for this parameter are “shrunk”
(see below for a discussion of shrinkage estimators) towards
zero. The sampling variance for b2 is thus lowered relative to
the other models, particularly relative to model 4 which is
the model fitted by OLS. As the correlation between the
predictors increases, a problem arises because it becomes
increasingly difficult to distinguish between models 2 and 3.
This results in bias in the two parameter estimates (Figs 1d
and 2b) as weight is given to the incorrect model (model 3).

When the effects of both predictors are strong, a high
weight is given to model 4, and the others given low

weights. This means that the model used for estimation by
the AIC-IT method is basically the same model that is fitted
by OLS.

A final small, but potentially important point, to
emerge from Fig. 2 concerns the apparently aberrant
points in Fig. 2c, d. The point in question is the estimate of
the effect of x1 when the two predictors are perfectly
correlated (r=1). At this point because the two predictors
are indistinguishable, only one parameter can be estimat-
ed. The estimate from OLS is ∼1.25 (the sum of b1 and
b2), for the AIC-IT method it is ∼0.8. In the case of OLS,
it is easy to see what is happening: because x1 and x2
are the same, the effect of x1 is estimated to be the sum
of the effects of the two variables. In general, it is easy
to show that the slope estimated for a single predictor x1
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Fig. 1 Examples of the
sampling distributions of
parameters estimated using OLS
(a–c) and AIC–IT (d–f). Data
were generated according
to a linear model with two
covariates, x1 and x2, with each
dataset containing 10 000
observations. The model is
described in detail in the text.
The values of the slopes were
set as 0 for x1 (red) and 0.5 for
x2 (black). The sampling distri-
butions were generated from
10 000 replicates at each
parameter combination. The
simulations were repeated at
different levels of r, the correla-
tion between the predictions:
r was set at 0 (a, d), 0.5 (b, e)
and 0.95
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used singly in preference to co-fitting with a second
correlated predictor x2 is b1+rb2. The bad consequences
of this for practical regression analysis are discussed
below.

Example data: model-averaging versus OLS

The analysis of the example dataset is summarised in
Table 1. The full model for the data indicates that food (b=
3.20, se=1.35, P=0.026) and group size (b=−0.69, se=
0.15, P<0.0001) are both significant predictors of weight,
whilst area is not important (b=0.35, se=0.22, P=0.12).
Comparing the magnitude of the coefficients with their
standard errors to estimate effect size, the effect of group
size was much greater (4.6) than that of food (1.6). The
overall model fit is moderate (R2=0.41). As noted above,
the collinearity between the predictors is strong (r=0.87).
The model-averaged parameter estimate for food is a bit
higher than that obtained using OLS (3.46 compared with
3.20 from the OLS model), whereas for group size the
estimate is similar (−0.65 compared with −0.69). The
model-averaged estimate for area is rather lower than that
from the OLS model (0.22 compared with 0.35). The
parameter variances are generally similar (0.23 vs. 0.22 for

area; 1.38 vs. 1.35 for food; and 0.16 vs. 0.15 for group
size). Although, based on theory, we would expect the
variances to be lower for the model-averaged parameters, in
practice this may be offset by some additional uncertainty
resulting from the model selection process.

In this example, the OLS and model-averaged parame-
ters are overall very similar indeed, despite the high degree
of collinearity. In large part, this results from the overall
moderate effects of the predictors on the response variable.
Given that we would expect the model-averaged parameters
to behave in a more stable manner under such a high level
of collinearity, the similarity of the results should lead us to
conclude (1) that the results of the OLS model are not
hugely biased by the underlying collinearity in the data; (2)
model selection should be a useful way to proceed in this
dataset as the analysis indicates that the two best models
contain the two collinear variables, but that the model
containing the third (area) barely improves the relative fit to
the data.

Measurement error in the face of collinearity

The worst effects of measurement error on estimation of
regression parameters by OLS (essentially the same result
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Fig. 2 Simulated parameter
estimates and 95% percentiles
for different fitting methods and
predictor values. Data were
simulated as described in the
text, and parameters estimated
using OLS (a, c) ort AIC-IT (b,
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set as as 0 for x1 (red) and 0.5
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would also be obtained from AIC-IT) are illustrated in
Fig. 4. In Fig. 4 the two predictors have reasonably strong
effects (b1=0.75, b2=0.5). There is measurement error in
x2 which has the consequence that, even in the absence of
collinearity between the predictors, the effect of x2 is
under-estimated. This bias resulting from error in predic-
tors is well known, and termed ‘attenuation’ (e.g. Carroll
et al. 2006), however the effect does not seem widely
appreciated.

The effects of this bias become extremely important
when collinearity between the variables exists. As shown in
Fig. 4b, c, collinearity results in the effect of x2 being
progressively underestimated, and the effect of x1 over-
estimated. What is happening is that the measurement error
in x2 results in under-estimation in the effect of this variable
and, as the collinearity between the predictor increases, the
effect of x2 is mis-attributed to x1.

The effect is generalised in Fig. 5. As shown in Fig. 5
there is no bias, unsurprisingly, when the effect of the
predictor with error is zero (Fig. 5a, b), irrespective of the
estimation method. However, problems arise when both
variables have non-zero effects and the degree of collinear-
ity increases. Irrespective of the estimation method
employed, there is bias in the estimates of both parameters
with the consequence that at moderate levels of collinearity
(r>0.6) estimates of both parameters are very different from
their true values. Indeed even at low values of r there is
some bias because of statistcal attenuation, i.e., the
measurement error reduces the estimate of the predictor
with error in it.

How does this relate to the example data and analysis
summarised in Table 1? Unfortunately, measurement error
is not estimated for these data. However, intuitively one
would expect that in a detailed behavioural study, group

Table 1 Analysis of a dataset containing multicollinearity using AIC-IT methods

Model Intercept se Area se Food se Group Size se cAIC wi

0 4.59 0.12 – – – – – – 64.86 0.00

1 4.41 0.49 – – 0.25 0.68 – – 67.19 0.00

2 5.05 0.37 – – – – –0.12 – 65.46 0.00

3 4.31 0.42 0.10 0.14 – – – – 66.82 0.00

4 3.98 0.39 – – 4.51 1.11 –0.66 0.15 53.77 0.46

5 4.44 0.49 0.22 0.29 –0.70 1.42 – – 69.22 <0.001

6 4.49 0.35 0.66 0.19 – – –0.47 0.13 56.78 0.10

7 4.00 0.38 0.35 0.22 3.20 1.35 –0.69 0.15 53.86 0.44

Parameter estimate 4.04 0.41 0.22 0.23 3.46 1.38 –0.65 0.16

Probability >0.99 0.54 0.90 1.00

The full details of the dataset are given in the text. Eight models were considered containing all combinations of the three predictors. The
parameters were estimated for each model separately, shown together with standard errors (se) for each parameter in each model. Bias-corrected
AIC values (cAIC) and model weights (wi) were calculated and used to generate model averaged parameter estimates and inclusion probabilities
for parameters (bottom two lines)
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Fig. 3 The variances recorded for the simulations in Fig. 2. a The
variances for the OLS (open symbols) and AIC-IT (closed) estimates
of parameters when the slope parameters were set at 0 for x1 (red) and
0.5 for x2 (black) (b) as (a), but slopes were set at 0.75 for x1 (red) and
0.5 for x2 (black). Note that the variances are the same for most
parameter values
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size would be more accurately measured than food
availability as the former is based on direct counts of
animals over a long period. Thus, without further informa-
tion, one hypothesis is that the difference in magnitude of
the effects of the predictors (group size is estimated to have
a stronger effect than food availability) could be a

consequence of different levels of measurement errors in
the two predictors.

Discussion

Linear modelling with multiple predictors will always be an
important and commonly used technique in behavioural and
ecological research. There has been a great deal of debate
about how such analyses are best conducted (e.g. Burnham
and Anderson 1998, 2002; Garcia-Berthou 2001; Freckleton
2002; Link and Barker 2006) with major shifts in what is
considered best practice (Rushton et al. 2004). The main
assumptions of such analyses are well known, however the
consequences of collinearity and measurement error for
different techniques are only rarely examined. The key
points I wish to make in this paper are that: (1) when using
methods such as model averaging, there is a possibility that
bias reduction by parameter shrinkage may yield incorrect
results; (2) when measurement error and collinearity occur
simultaneously, there are potentially severe problems for
both estimation and hypothesis testing.

An important point to realise is that when all predictors
have strong effects OLS and AIC-IT will be largely
dependent on the same model. The methods differ most
when predictors with weak effects are included: AIC-IT is
the more efficient method for reducing the parameter
estimates for predictors with weak or no effects, and this
conclusion holds even in the face of weak to moderate
collinearity. However, as noted in the previous paragraph,
AIC-IT methods will yield biased parameter estimates when
predictors are highly correlated, particularly when their
effects are rather different.

Bias and variance

It is well known that there is a statistical trade-off between
bias and variance in parameter estimates. This is exempli-
fied in Fig. 1 in which the OLS parameter estimates are
unbiased regardless of levels of collinearity; those from the
model averaging method have lower variance, but begin to
exhibit bias under high levels of collinearity. Conventional
diagnostics such as variance inflation factors allow the
extent of this effect to be estimated. The AIC-IT parameter
estimates have a lower sampling variance for weak
predictors because estimation is more heavily weighted to
models that do not incorporate the weak predictors. The
model averaged parameter estimates Eq. 4 are known as
shrinkage estimators, because these have sampling distri-
butions ‘shrunk’ back towards zero. This property of
model-averaged parameters is discussed in detail by
Burnham and Anderson (2002). The important point here
is that under low to moderate levels of collinearity the
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data containing measurement error in one variable. Data were
generated according to a linear model with two covariates, x1 and
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described in detail in the text. The values of the slopes were set as
0.75 for x1 (red) and 0.5 for x2 (black). The sampling distributions of
the OLS estimates were generated from 10,000 replicates at each
parameter combination. The simulations were repeated at different
levels of r, the correlation between the predictions: r was set at 0 (a),
0.5 (b) and 0.95 (c). x1 was assumed to contain error with the standard
deviation of the error set at 0.5. The true parameter values are
indicated by the vertical lines
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AIC-IT estimates have lower variance than OLS and thus
may be preferable.

What to do with collinear variables?

The usual advice with a pair of collinear variables is to
combine them in some way or to eliminate one or the other
(see introduction). The results above reveal that this may
not always be the best course of action. In the analysis, it
was noted when x2 is absent from the model, the slope for
the effect of x1 would be b1+rb2, where r is the correlation
between x2 and x1. Thus, the effect of x1 would be
systematically over or under-estimated, depending on the
sign of the correlation between the predictors and the signs
of the slopes. The consequence of this is that the way to
deal with collinear variables will depend on their nature and
interpretation. In the hypothetical example in the introduc-
tion, rainfall and temperature would be expected to be
negatively correlated with each other because hot condi-
tions are usually associated with low rainfall. Low rainfall
depresses growth of plants, whereas high temperatures
promote growth. In this instance, it would not make sense
to combine the two variables, or to omit one of them, even

if they are highly correlated. Doing so would risk under-
estimating the effects of the included variable and of mis-
modelling the underlying determinants of growth. On the
other hand, if the dataset contained both rainfall and soil
moisture as predictors, these two variables are simply
different ways of measuring the same quantity, i.e. the
amount of water available. As a consequence, it would
seem sensible to combine these, or just include one or the
other.

If collinearity exists in a dataset, then there is no
justification at all for using automated regression selection,
such as stepwise regression. These techniques are widely
criticised in the statistical literature and beyond because
they result in biased parameter estimates with degenerate
sampling distributions and a high probability of Type I
errors (Chatfield 1996; Burnham and Anderson 1998, 2002;
Whittingham et al. 2006). Collinearity reflects important
structure in the data, which needs to be understood and
dealt with explicitly. Although some authors have sug-
gested ways in which Stepwise methods may be amended
to deal with such issues (e.g. Hegyi and Garamszegi 2010)
such suggestions are computational kludges, and ignore the
wider problems (e.g. see Burnham et al. 2010). In most
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cases that researchers believe they should be conducting
selection (e.g. using stepwise methods as envisaged by
Hegyi and Garamszegi (2010), they would probably be
better advised to use a full model (Whittingham et al. 2006;
Forstmeier and Schielzeth 2010) and the results here largely
endorse that conclusion.

AIC-IT methods are generally robust to collinearity.
However, some problems can arise when predictors are
highly correlated, particularly when their effects are rather
different. The most extreme problem arises when one
predictor has a weak effect, but is strongly correlated with
another which has a strong effect. This situation can easily
arise in real data. In a behavioural ecological context, for
example, Székely et al. (2004) found a strong correlation
between sexual dimorphism in body size and dimorphism
in bill size in shorebirds. However, when compared with
other variables in the dataset, the underlying correlates of
these two measures of size were rather different. If not
recognised, this type of variation can lead to substantial
bias in both parameters (e.g. see Fig. 1f). These methods
should be used with caution in such cases. In the
example discussed above, one pragmatic fix would have
been to omit models 2 and 3 from consideration when x1
and x2 are highly correlated. The justification for doing
this would be that the models are essentially indistinguish-
able. The relative fits of model 1 and model 4 would allow
the effects of the two predictors to be measured together
and contrasted with a model including neither and should
yield unbiased parameter estimates. In this example, this
would essentially be the same as conducting an OLS
analysis.

Other techniques exist for analysing data which contain
collinearity. Ridge regression is one such approach (e.g.
Draper and Smith 1998). This is a method that was
developed with a view to allowing parameter estimation
in cases if the collinearity between predictors is so extreme
that the normal equations used to solve OLS problems
contain a singular cross-product of the predictors. The
method works by adding a parameter that modifies the
normal equations to reduce the inflation of variance that
results from collinearity. The resultant parameter estimates
will be biased; however, this bias is traded off against
reduced variance in parameter estimates. The downsides of
the method are that the choice of parameter is arbitrary
(although there are diagnostics that can be employed). The
technique is most useful in generating predictions from a
given model, and is less useful for comparing a suite of
models.

Measurement error in predictors

Measurement error in predictors is almost never quantified
or dealt with. This is despite the known issues with

measurement error in regression models (Carroll et al.
2006) and the consequences for inference and estimation in
practical analyses. In one of the few analyses to have
addressed this, Linden and Knape (2009) showed that
measurement error in predictors can result in the underes-
timation of environmental impacts on population dynamics,
so the consequences for not estimating this error are
demonstrably important.

In principle, if the measurement error in predictors has
been quantified this can be dealt with. Several techniques
exist for doing this, including simulation extrapolation
(SIMEX; Cook and Stefanski 1994; Stefanski and Cook
1995), Bayesian methods (Fox and Glas 2003), multi-level
models (Goldstein 1995), expectation maximization (Schafer
1987) or likelihood methods (Carroll et al. 1984). The
technology exists with which to deal with measurement
error; the limitation is that measurement errors in data are
rarely quantified. The need to quantify measurement error
has been emphasised in the ecological literature in the
context of population modelling (Shenk et al. 1998; Ellner et
al. 2002; Dennis et al. 2006; Freckleton et al. 2006; Linden
and Knape 2009) and it is increasingly appreciated that this
is an important component of variability in data that needs to
be accounted for.

The simulations reported in Figs 4 and 5 were designed
to illustrate that if measurement error differs between
collinear predictors, then the consequences for estimation
and inference can be particularly severe. If predictors are
correlated with each other, but have different effects on the
response variable, then differences between in the degree of
measurement error can lead to extremely biased results.
This is by no means a contrived situation: for instance, the
example of plant growth given above is one in which two
strongly negatively correlated drivers (temperature and
rainfall) can have contrasting effects for the same underly-
ing process (hot weather leads to a positive effect of
temperature positive and a negative effect of rainfall). The
simulation results indicate that if this is the case, then the
resultant models can yield incorrect parameter estimates,
the inference based on those parameters is wrong, and
parameters have low sampling variance. Because of
measurement error, the underlying correlation between the
predictors would not be identified and the likely problem
not diagnosed.

Dealing with this issue is difficult, and obviously
impossible if measurement error has not been quantified.
The main recommendation is that, assuming error has been
estimated, one should proceed with caution if the relative
level of error differs greatly between predictors, even if the
level of collinearity is low. This is because measurement
error can mask correlations between the variables and
because differences in the level of error will be manifest in
the relative values of slopes for the predictors.
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Conclusions

Linear models and multiple regressions are extremely
powerful tools, especially when combined with large
datasets. The downside is that frequently data are generated
non-experimentally and we are reliant on natural variation
in observational data. The price to pay is that frequently we
do not understand the structure of the data, and that
correlations between variables and their error structure can
complicate analyses. The statistical tools exist to deal with
such complexity. However, we need to be aware of the
possible pitfalls and of how they can be diagnosed.
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