G-Varieties and Principal Minors of Symmetric Matrices

Luke Oeding

Texas A&M University

February 16, 2009

Dissertation Defense

Goals

- Let $G \subset GL(V)$, V- vector space over \mathbb{C} . A variety $X \subset \mathbb{P}V$ is a G-variety if $G.X \subset X$.
- Goal 1: Study a prototypical *G*-variety and learn how to study other *G*-varieties which arise in fields such as algebraic statistics, probability theory, signal processing, etc.).
- Goal 2: Solve the Holtz-Sturmfels Conjecture (set theoretic version).

$\mathsf{Theorem}$

The variety of principal minors of symmetric matrices is cut out set theoretically by the hyperdeterminantal module.

Questions

- A principal minor of a matrix A is the determinant of a submatrix determined by striking out the same rows and columns of A, i.e. centered on the diagonal.
- Holtz and Schneider, D. Wagner: When is it possible to prescribe the principal minors of a symmetric matrix?
- Equivalently, when can you prescribe all the eigenvalues of a symmetric matrix and all of its principal submatrices?
- For $n \ge 3$ this is an overdetermined problem : $\binom{n+1}{2}$ versus 2^n .

The Variety of Principal Minors of Symmetric Matrices

• The variety of principal minors of $n \times n$ symmetric matrices, Z_n , is defined by the following rational map

$$\varphi: \mathbb{P}(S^2\mathbb{C}^n \oplus \mathbb{C}) \dashrightarrow \mathbb{P}(\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2) = \mathbb{P}\mathbb{C}^{2^n}$$

 $\Delta_I(A)$ = principal minor with rows/columns indicated by the location of the 1's. Compact notation $\varphi([A,t]) = \lceil t^{n-|I|} \Delta_I(A) X^I \rceil$.

- Q: What are the Cartesian equations for Z_n ?
- Expect many relations because of $\binom{n+1}{2}$ versus 2^n .

Examples

Compute principal minors

$$2 \times 2 \text{ case:} \qquad \left[\left(\begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{1,2} & a_{2,2} \end{array} \right), t \right] \mapsto [t^2, ta_{1,1}, ta_{2,2}, a_{1,1}a_{2,2} - a_{1,2}^2]$$

Work on set where t = 1, can go backwards:

$$\begin{bmatrix} [1, z_{10}, z_{01}, z_{11}] \mapsto \begin{bmatrix} \begin{pmatrix} z_{10} & \pm \sqrt{z_{10}z_{01} - z_{11}^2} \\ \pm \sqrt{z_{10}z_{01} - z_{11}^2} & z_{01} \end{pmatrix}, 1 \end{bmatrix}$$

- Can always solve the 2×2 case.
- In fact, in the $n \times n$ case, prescribing the 1×1 and 2×2 principal minors of a symmetric matrix *determines* the matrix up to signs of the off-diagonal terms.

Examples

$$\begin{bmatrix}
\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{1,2} & a_{2,2} & a_{2,3} \\ a_{1,3} & a_{2,3} & a_{3,3} \end{pmatrix}, t \\
\mapsto \begin{bmatrix} t^3, t^2 a_{1,1}, t^2 a_{2,2}, t(a_{1,1} a_{2,2} - a_{1,2}^2), \\ t^2 a_{3,3}, t(a_{1,1} a_{3,3} - a_{1,3}^2), t(a_{2,2} a_{3,3} - a_{1,2}^2), \\ a_{1,1} a_{2,2} a_{3,3} + 2a_{1,2} a_{1,3} a_{2,3} - a_{1,1} a_{2,3}^2 - a_{2,2} a_{1,3}^2 - a_{3,3} a_{1,2}^2 \end{bmatrix}$$

Can you go backwards?

$$[z_{000}, z_{100}, z_{010}, z_{110}, z_{001}, z_{101}, z_{011}, z_{111}] \mapsto ??$$

Count parameters: 6+1 matrix entries versus 7+1 principal minors! There must be at least one relation!

First result

Theorem (Holtz-Sturmfels '07)

$$\mathcal{I}(Z_3) = \langle hyp \rangle$$
, where hyp is...

...this beautiful degree 4 homogeneous polynomial:

$$hyp = z_{000}^2 z_{111}^2 + z_{100}^2 z_{011}^2 + z_{010}^2 z_{101}^2 + z_{110}^2 z_{001}^2 + 4 (z_{000} z_{110} z_{101} z_{011} + z_{100} z_{010} z_{001} z_{111})$$

$$- 2 (z_{000} z_{100} z_{011} z_{111} + z_{000} z_{010} z_{101} z_{111} + z_{000} z_{001} z_{110} z_{111} + z_{100} z_{010} z_{011} z_{110} + z_{100} z_{001} z_{110} z_{011} + z_{001} z_{010} z_{010} z_{101} z_{110})$$

-Cayley's hyperdeterminant of format $2 \times 2 \times 2$. Notice: *hyp* is a invariant under the action of $\mathfrak{S}_3 \times SL(2) \times SL(2) \times SL(2)!$

Hidden Symmetry

Theorem (Landsberg, Holtz-Sturmfels, -)

 Z_n is invariant under the action of $G = \mathfrak{S}_n \times SL(2)^{\times n}$. Moreover, G is the largest subgroup of $GL(2^n)$ which preserves Z_n .

- Fact: A variety $X \subset \mathbb{P}^N$ is a G-variety \Leftrightarrow the ideal $\mathcal{I}(X)$ is a G-module.
- Z_n is a subvariety of $\mathbb{P}(V_1 \otimes \cdots \otimes V_n)$, where each $V_i \simeq \mathbb{C}^2$.
- KEY POINT: We must study $\mathcal{I}(Z_n) \subset \operatorname{\mathsf{Sym}}(V_1^* \otimes \cdots \otimes V_n^*)$ as a G-module!
- Mantra: "Each irreducible module is either in or out!"

Slight Detour: A Geometric Proof of Symmetry

- For non-degenerate $\omega \in \bigwedge^2 \mathbb{C}^n$, the Lagrangian Grassmannian is $Gr_{\omega}(n,2n) = \{E \in Gr(n,2n) \mid \omega(v,w) = 0 \ \forall v,w \in E\}.$
- $Gr_{\omega}(n,2n)$ is a homogeneous variety for Sp(2n).
- $Gr_{\omega}(n,2n)$ is the image of the rational map:

$$\psi: \mathbb{P}(S^2\mathbb{C}^n \oplus \mathbb{C}) \longrightarrow \mathbb{P}\Gamma_n \simeq \mathbb{P}^{\binom{2n}{n} - \binom{2n}{n-2} - 1}$$
 {symmetric matrix} \mapsto {vector of all nonredundant minors}

- The connection: Z_n is a linear projection of $Gr_{\omega}(n,2n)$.
- Can use this projection to *find* the symmetry group of Z_n as a subgroup of Sp(2n).
- Try to find projections from homogeneous varieties to study other G-varieties.

Representation Theory

- Want to study $\mathcal{I}_d(Z_n) \subset S^d(V_1^* \otimes \cdots \otimes V_n^*)$.
- Each irreducible $\mathfrak{S}_n \times SL(2)^{\times n}$ -module in $S^d(V_1^* \otimes \cdots \otimes V_n^*)$ is isomorphic to one indexed by partitions π_i of d of the form :

$$S_{\pi_1}S_{\pi_2}\dots S_{\pi_n}:=\bigoplus_{\sigma\in\mathfrak{S}_n}S_{\pi_{\sigma(1)}}V_1^*\otimes S_{\pi_{\sigma(2)}}V_2^*\otimes\dots\otimes S_{\pi_{\sigma(n)}}V_n^*$$

- If M is an irreducible G-module, then $M = \{G.v\}$, some vector v use this as often as possible.
- This gives a finite list of vectors to test for ideal membership!
- Also gives a way to produce many polynomials in $\mathcal{I}(Z_n)$ from one polynomial.

Rephrasing of Previous Results

Theorem (Holtz-Sturmfels '07)

$$I(Z_3)$$
 is generated degree 4 by $\{hyp\} = S_{(2,2)}S_{(2,2)}S_{(2,2)}$.

Theorem (Holtz-Sturmfels '07)

$$\mathcal{I}(Z_4)$$
 is generated in degree 4 by $\{\mathfrak{S}_4 \times SL(2)^{\times 4}.hyp_{123}\} = S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)}.$

 hyp_{123} is the 2 × 2 × 2 hyperdeterminant on the variables z_{***0} .

Conjecture (Holtz-Sturmfels '07)

$$\mathcal{I}(Z_n)$$
 is generated in degree 4 by $\{\mathfrak{S}_n \times SL(2)^{\times n}.hyp_{123}\} = S_{(4)}...S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)}.$

A Limit of the Computer's Usefulness

- For n = 3: A single irreducible degree 4 polynomial on 8 variables cuts out the irreducible hypersurface in \mathbb{P}^7 .
- For n=4: 20 degree 4 polynomials on 16 variables. Macaulay2 \Rightarrow the ideal is prime and has the correct dimension. But Z_4 is an irreducible variety + some facts from comm. alg. \Rightarrow done.
- For n = 5: 250 degree 4 polynomials on 32 variables. Sadly, the computer has not yet told me whether or not this ideal is prime.
- For n = 6: 2500 degree 4 polynomials on 64 variables.
- For n = n: $\binom{n}{3} 5^{n-3}$ degree 4 polynomials on 2^n variables. What can we say in general without the computer?

New Results

Theorem (-)

Let $M := \{\mathfrak{S}_n \times SL(2)^{\times n}.hyp_{123}\} = S_{(4)} \dots S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)}$. The variety Z_n is cut out set theoretically by the hyperdeterminantal module.

$$V(M) = Z_n$$
.

- To prove that $Z_n \subset \mathcal{V}(M)$, show that hyp, a highest weight vector for the irreducible module M, vanishes on every point of Z_n . Follows from 3×3 case.
- To prove that $Z_n \supset \mathcal{V}(M)$, a more geometric understanding of the zero set, $\mathcal{V}(M)$, is needed.

Outline of proof of main theorem

- Want to show $\mathcal{V}(M) \subset Z_n$ do induction on n.
- Give a geometric characterization of $\mathcal{V}(M)$.
- Attempt to construct a matrix $A \in S^2\mathbb{C}^n$ that maps to $z \in \mathcal{V}(M)$.
- Identify possible obstructions as *G*-modules.
- Identify the space of obstructions geometrically.
- Show V(M) also contains the space of obstructions.

Characterizing the zero set of $\mathcal{V}(M)$ via augmentation

- Notice that $M_n = \underbrace{S_{(4)} \dots S_{(4)}}_{n-3} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ and $M_{n+1} = \underbrace{S_{(4)} \dots S_{(4)}}_{n-2} S_{(2,2)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ is still degree 4.
- What can we say about zero set of an augmented ideal $\mathcal{V}(\mathcal{I}_d(X) \otimes S^d V^*)$ based on $\mathcal{V}(\mathcal{I}_d(X))$?

Lemma (inspired by Landsberg-Manivel lemma regarding prolongation)

Let $X \subset \mathbb{P}W$ and let $\tilde{X} = \mathcal{V}(\mathcal{I}_d(X))$ (notation).

$$\mathcal{V}(\mathcal{I}_d(X)\otimes S^dV^*)=Seg(\tilde{X} imes\mathbb{P} V)\sqcup \bigcup_{L\subset \tilde{X}}\sigma_d(\mathbb{P} L imes\mathbb{P} V),$$

where $L \subset \tilde{X}$ are linear subspaces.

What does this buy us?

Consequence

Assume that $M=\bigoplus_i M_{\hat{i}}\otimes S^dV_i\subset S^d(V_1\otimes\cdots\otimes V_n)$ and $V_i\simeq\mathbb{C}^2$, then

$$\mathcal{V}(M) = \cap_{i=1}^n \left(\bigcup_{L \subset V(M_i)} \mathbb{P}(L \otimes V_i) \right).$$

- Suppose $z \in \mathcal{V}(M) = \mathcal{V}(\bigoplus_i M_{\hat{i}} \otimes S^d V_i)$, and assume for induction that $\mathcal{V}(M_{\hat{i}}) \simeq Z_{n-1}$.
- Then our geometric realization gives n different expressions for z,

$$z = \varphi([A^{(i)}, t^{(i)}]) \otimes x_i^0 + \varphi([B^{(i)}, s^{(i)}]) \otimes x_i^1,$$
 (no summation)

- where $A^{(i)}, B^{(i)}$ are $n-1 \times n-1$ matrices, and $\{x_i^0, x_i^1\} = V_i$.
- If we can use this information to build an $n \times n$ matrix A so that $\varphi([A, t]) = z$, we will have proved the theorem.

Building a matrix

We have n expressions

$$z = \varphi([A^{(i)}, t^{(i)}]) \otimes x_i^0 + \varphi([B^{(i)}, s^{(i)}]) \otimes x_i^1,$$

and the term $\varphi([A^{(1)},t^{(1)}])\otimes x_1^0$ can be thought of as the principal minors (not involving the first row and column) of the matrix

$$A(\overrightarrow{x_1}) = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \dots & x_{1,n} \\ x_{1,2} & a_{1,2}^{(1)} & a_{2,2}^{(1)} & \dots & a_{2,n}^{(1)} \\ \vdots & \vdots & \vdots & \vdots \\ x_{1,n} & a_{1,n}^{(1)} & a_{2,n}^{(1)} & \dots & a_{n,n}^{(1)} \end{pmatrix},$$

where $x_{1,i}$ are variables, and the entries of $A^{(1)} = (a_{i,j}^{(1)})$, are fixed. The other expressions $\varphi([A^{(i)}, t^{(i)}]) \otimes x_i^0$ have a similar interpretation.

Building a matrix

- The 1×1 principal minors determine the diagonal entries and the 2×2 principal minors are all of the form $a_{i,i}a_{j,j} a_{i,j}^2$ the 2×2 principal minors determine the off diagonal entries up to sign.
- We know that the principal minors $\Delta_I(A(\overrightarrow{x_i}))$ and $\Delta_I(A(\overrightarrow{x_j}))$ agree whenever $i, j \notin I$.
- Our question comes down to whether we can make consistent choices so that the matrices $A(\overrightarrow{x_i})$ agree.
- It suffices to prove that if we fix $A^{(1)}$, that we can choose $\overrightarrow{x_1}$ and $A^{(i)}$ so that all of the principal minors agree where the matrices overlap.

- Construct $A(\overrightarrow{x_i})^{(j)}$, by deleting the j^{th} row and column.
- By induction, it suffices to consider

$$A(x_{1,2}) = \begin{pmatrix} a_{1,1} & x_{1,2} & a_{1,3} & \dots & a_{1,n} \\ x_{1,2} & a_{2,2} & \dots & \dots & a_{2,n} \\ a_{1,3} & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \dots & & a_{n,n} \end{pmatrix},$$

and show that we can pick $x_{1,2}$ so that all of the principal minors of $A(\overrightarrow{x_i})^{(j)}$ agree.

• We will have only determined that the matrix $A(x_{1,2})$ has all the correct principal minors (matching our point $z \in \mathcal{V}(M)$) except possibly the determinant.

Almost...

Lemma (The Almost Lemma, $n \ge 4$.)

Suppose
$$[z] = [z_I X^I] \in \mathcal{V}(M)$$
, and $[v_A] = [v_{A,I} X^I] = [\varphi([A, t])] \in Z_n$ are such that $z_I = v_{A,I}$ for all $I \neq [1, ..., 1]$. If $z_{[1,...,1]} \neq v_{A,[1,...,1]}$, then

$$[z] \in \bigcup_{\substack{|I_s| \leq 2\\ 1 \leq s \leq m}} \left(Seg\left(\mathbb{P}V_{I_1} \times \cdots \times \mathbb{P}V_{I_m} \right) \right) \subset Z_n.$$

We have essentially made a reduction to a problem in a single variable. Once the obstructions to solving this problem are identified as a G-module, the proof of this lemma is an application of the geometric characterization above.

Almost...but what does this buy me?

The lemma says that $Seg(\mathbb{P}V_{l_1} \times \cdots \times \mathbb{P}V_{l_m}) \subset Z_n$.

- In fact, every point in $Seg(\mathbb{P}V_{I_1} \times \cdots \times \mathbb{P}V_{I_m}) \subset Z_n$ comes from a block diagonal matrix with only 1×1 and 2×2 blocks.
- Such a matrix is a special case of a symmetric tri-diagonal matrix, and it's a fact that none of its principal minors depend on the sign of the off diagonal terms.
- We use this fact iteratively in our induction for the proof of the final lemma.

Concluding Remarks

- This problem shows how representation theory and geometry can be used to prove exciting new results.
- We resolved the set theoretic version of the Holtz-Sturmfels conjecture, but more work needs to be done in order to prove the ideal theoretic version.
- Thank you for attending! Special thanks to my thesis advisor, J.M. Landsberg and to the rest of my thesis committee.

Applications outside of geometry

- Spectral graph theory.
- Probability theory covariance of random variables.
- Statistical physics determinantal point processes.
- Matrix theory P-matrices, GKK- τ matrices.