G-Varieties and Principal Minors of Symmetric Matrices

Luke Oeding

Texas A\&M University
February 16, 2009

Dissertation Defense

Goals

- Let $G \subset G L(V), V$ - vector space over \mathbb{C}. A variety $X \subset \mathbb{P} V$ is a G-variety if $G . X \subset X$.
- Goal 1: Study a prototypical G-variety and learn how to study other G-varieties which arise in fields such as algebraic statistics, probability theory, signal processing, etc.).
- Goal 2: Solve the Holtz-Sturmfels Conjecture (set theoretic version).

Theorem

The variety of principal minors of symmetric matrices is cut out set theoretically by the hyperdeterminantal module.

Questions

- A principal minor of a matrix A is the determinant of a submatrix determined by striking out the same rows and columns of A, i.e. centered on the diagonal.
- Holtz and Schneider, D. Wagner: When is it possible to prescribe the principal minors of a symmetric matrix?
- Equivalently, when can you prescribe all the eigenvalues of a symmetric matrix and all of its principal submatrices?
- For $n \geq 3$ this is an overdetermined problem : $\binom{n+1}{2}$ versus 2^{n}.

The Variety of Principal Minors of Symmetric Matrices

- The variety of principal minors of $n \times n$ symmetric matrices, Z_{n}, is defined by the following rational map

$$
\varphi: \mathbb{P}\left(S^{2} \mathbb{C}^{n} \oplus \mathbb{C}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}\right)=\mathbb{P} \mathbb{C}^{2^{n}}
$$

$$
\begin{aligned}
{[A, t] \mapsto } & {\left[t^{n}, t^{n-1} \Delta_{[1,0 \ldots, 0]}(A), t^{n-1} \Delta_{[0,1,0, \ldots, 0]}(A), t^{n-2} \Delta_{[1,1,0, \ldots, 0]}(A),\right.} \\
& t^{n-1} \Delta_{[0,0,1,0, \ldots, 0]}(A), t^{n-2} \Delta_{[1,0,1,0, \ldots, 0]}(A), t^{n-2} \Delta_{[0,1,1,0, \ldots, 0]}(A), \\
& \left.t^{n-3} \Delta_{[1,1,1,0, \ldots, 0]}(A), \cdots, \Delta_{[1, \ldots, 1]}(A)\right]
\end{aligned}
$$

$\Delta_{I}(A)=$ principal minor with rows/columns indicated by the location of the 1's. Compact notation $\varphi([A, t])=\left[t^{n-|I|} \Delta_{l}(A) X^{\prime}\right]$.

- Q: What are the Cartesian equations for Z_{n} ?
- Expect many relations because of $\binom{n+1}{2}$ versus 2^{n}.

Examples

Compute principal minors
2×2 case: $\quad\left[\left(\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{1,2} & a_{2,2}\end{array}\right), t\right] \mapsto\left[t^{2}, t a_{1,1}, t a_{2,2}, a_{1,1} a_{2,2}-a_{1,2}^{2}\right]$
Work on set where $t=1$, can go backwards:

$$
\left[1, z_{10}, z_{01}, z_{11}\right] \mapsto\left[\left(\begin{array}{cc}
z_{10} & \pm \sqrt{z_{10} z_{01}-z_{11}^{2}} \\
\pm \sqrt{z_{10} z_{01}-z_{11}^{2}} & z_{01}
\end{array}\right), 1\right]
$$

- Can always solve the 2×2 case.
- In fact, in the $n \times n$ case, prescribing the 1×1 and 2×2 principal minors of a symmetric matrix determines the matrix up to signs of the off-diagonal terms.

Examples

$$
\begin{aligned}
& {\left[\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{1,2} & a_{2,2} & a_{2,3} \\
a_{1,3} & a_{2,3} & a_{3,3}
\end{array}\right), t\right]} \\
& \quad \mapsto \quad\left[t^{3}, t^{2} a_{1,1}, t^{2} a_{2,2}, t\left(a_{1,1} a_{2,2}-a_{1,2}^{2}\right)\right. \\
& \quad t^{2} a_{3,3}, t\left(a_{1,1} a_{3,3}-a_{1,3}^{2}\right), t\left(a_{2,2} a_{3,3}-a_{1,2}^{2}\right), \\
& \left.\quad a_{1,1} a_{2,2} a_{3,3}+2 a_{1,2} a_{1,3} a_{2,3}-a_{1,1} a_{2,3}^{2}-a_{2,2} a_{1,3}^{2}-a_{3,3} a_{1,2}^{2}\right]
\end{aligned}
$$

Can you go backwards?

$$
\left[z_{000}, z_{100}, z_{010}, z_{110}, z_{001}, z_{101}, z_{011}, z_{111}\right] \mapsto ? ?
$$

Count parameters: $6+1$ matrix entries versus $7+1$ principal minors! There must be at least one relation!

First result

Theorem (Holtz-Sturmfels '07)

$\mathcal{I}\left(Z_{3}\right)=\langle$ hyp \rangle, where hyp is...
...this beautiful degree 4 homogeneous polynomial:

$$
\begin{array}{r}
\text { hyp }=\quad z_{000}^{2} z_{111}^{2}+z_{100}^{2} z_{011}^{2}+z_{010}^{2} z_{101}^{2}+z_{110}^{2} z_{001}^{2} \\
+4\left(z_{000} z_{110} z_{101} z_{011}+z_{100} z_{010} z_{001} z_{111}\right) \\
-2\left(z_{000} z_{100} z_{011} z_{111}+z_{000} z_{010} z_{101} z_{111}+z_{000} z_{001} z_{110} z_{111}\right. \\
\left.+z_{100} z_{010} z_{011} z_{101}+z_{100} z_{001} z_{110} z_{011}+z_{001} z_{010} z_{101} z_{110}\right)
\end{array}
$$

-Cayley's hyperdeterminant of format $2 \times 2 \times 2$. Notice: hyp is a invariant under the action of $\mathfrak{S}_{3} \times S L(2) \times S L(2) \times S L(2)$!

Hidden Symmetry

Theorem (Landsberg,Holtz-Sturmfels, -)

Z_{n} is invariant under the action of $G=\mathfrak{S}_{n} \times S L(2)^{\times n}$. Moreover, G is the largest subgroup of $G L\left(2^{n}\right)$ which preserves Z_{n}.

- Fact: A variety $X \subset \mathbb{P}^{N}$ is a G-variety \Leftrightarrow the ideal $\mathcal{I}(X)$ is a G-module.
- Z_{n} is a subvariety of $\mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$, where each $V_{i} \simeq \mathbb{C}^{2}$.
- KEY POINT: We must study $\mathcal{I}\left(Z_{n}\right) \subset \operatorname{Sym}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ as a G-module!
- Mantra: "Each irreducible module is either in or out!"

Slight Detour: A Geometric Proof of Symmetry

- For non-degenerate $\omega \in \bigwedge^{2} \mathbb{C}^{n}$, the Lagrangian Grassmannian is $G r_{\omega}(n, 2 n)=\{E \in \operatorname{Gr}(n, 2 n) \mid \omega(v, w)=0 \forall v, w \in E\}$.
- $G r_{\omega}(n, 2 n)$ is a homogeneous variety for $\operatorname{Sp}(2 n)$.
- $G r_{\omega}(n, 2 n)$ is the image of the rational map:

$$
\psi: \mathbb{P}\left(S^{2} \mathbb{C}^{n} \oplus \mathbb{C}\right) \quad \rightarrow \quad \mathbb{P} \Gamma_{n} \simeq \mathbb{P}^{\binom{(n n}{n}-\binom{2 n}{n-2}-1}
$$

\{symmetric matrix\} \mapsto \{vector of all nonredundant minors\}

- The connection: Z_{n} is a linear projection of $G r_{\omega}(n, 2 n)$.
- Can use this projection to find the symmetry group of Z_{n} as a subgroup of $S p(2 n)$.
- Try to find projections from homogeneous varieties to study other G-varieties.

Representation Theory

- Want to study $\mathcal{I}_{d}\left(Z_{n}\right) \subset S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$.
- Each irreducible $\mathfrak{S}_{n} \times S L(2)^{\times n}$-module in $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ is isomorphic to one indexed by partitions π_{i} of d of the form :

$$
S_{\pi_{1}} S_{\pi_{2}} \ldots S_{\pi_{n}}:=\bigoplus_{\sigma \in \mathfrak{S}_{n}} S_{\pi_{\sigma(1)}} V_{1}^{*} \otimes S_{\pi_{\sigma(2)}} V_{2}^{*} \otimes \cdots \otimes S_{\pi_{\sigma(n)}} V_{n}^{*}
$$

- If M is an irreducible G-module, then $M=\{G . v\}$, some vector v use this as often as possible.
- This gives a finite list of vectors to test for ideal membership!
- Also gives a way to produce many polynomials in $\mathcal{I}\left(Z_{n}\right)$ from one polynomial.

Rephrasing of Previous Results

Theorem (Holtz-Sturmfels '07)

$\mathcal{I}\left(Z_{3}\right)$ is generated degree 4 by $\{h y p\}=S_{(2,2)} S_{(2,2)} S_{(2,2)}$.

Theorem (Holtz-Sturmfels '07)

$\mathcal{I}\left(Z_{4}\right)$ is generated in degree 4 by $\left\{\mathfrak{S}_{4} \times S L(2)^{\times 4}\right.$. hyp $\left._{123}\right\}=S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$.
hyp $_{123}$ is the $2 \times 2 \times 2$ hyperdeterminant on the variables $z_{* * *}$.
Conjecture (Holtz-Sturmfels '07)
$\mathcal{I}\left(Z_{n}\right)$ is generated in degree 4 by $\left\{\mathfrak{S}_{n} \times S L(2)^{\times n}\right.$. hyp $\left._{123}\right\}=S_{(4)} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$.

A Limit of the Computer's Usefulness

- For $n=3$: A single irreducible degree 4 polynomial on 8 variables cuts out the irreducible hypersurface in \mathbb{P}^{7}.
- For $n=4$: 20 degree 4 polynomials on 16 variables. Macaulay $2 \Rightarrow$ the ideal is prime and has the correct dimension. But Z_{4} is an irreducible variety + some facts from comm. alg. \Rightarrow done.
- For $n=5$: 250 degree 4 polynomials on 32 variables. Sadly, the computer has not yet told me whether or not this ideal is prime.
- For $n=6: 2500$ degree 4 polynomials on 64 variables.
- For $n=n:\binom{n}{3} 5^{n-3}$ degree 4 polynomials on 2^{n} variables. What can we say in general without the computer?

New Results

Theorem (-)

Let $M:=\left\{\mathfrak{S}_{n} \times S L(2)^{\times n}\right.$. hyp $\left._{123}\right\}=S_{(4)} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$. The variety Z_{n} is cut out set theoretically by the hyperdeterminantal module.

$$
\mathcal{V}(M)=Z_{n} .
$$

- To prove that $Z_{n} \subset \mathcal{V}(M)$, show that hyp, a highest weight vector for the irreducible module M, vanishes on every point of Z_{n}. Follows from 3×3 case.
- To prove that $Z_{n} \supset \mathcal{V}(M)$, a more geometric understanding of the zero set, $\mathcal{V}(M)$, is needed.

Outline of proof of main theorem

- Want to show $\mathcal{V}(M) \subset Z_{n}$ - do induction on n.
- Give a geometric characterization of $\mathcal{V}(M)$.
- Attempt to construct a matrix $A \in S^{2} \mathbb{C}^{n}$ that maps to $z \in \mathcal{V}(M)$.
- Identify possible obstructions as G-modules.
- Identify the space of obstructions geometrically.
- Show $\mathcal{V}(M)$ also contains the space of obstructions.

Characterizing the zero set of $\mathcal{V}(M)$ via augmentation

- Notice that $M_{n}=\underbrace{S_{(4)} \ldots S_{(4)}}_{n-3} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ and

$$
M_{n+1}=\underbrace{S_{(4)} \ldots S_{(4)}}_{n-2} S_{(2,2)} S_{(2,2)} S_{(2,2)} \text { is still degree } 4 .
$$

- What can we say about zero set of an augmented ideal $\mathcal{V}\left(\mathcal{I}_{d}(X) \otimes S^{d} V^{*}\right)$ based on $\mathcal{V}\left(\mathcal{I}_{d}(X)\right)$?

Lemma (inspired by Landsberg-Manivel lemma regarding prolongation)
Let $X \subset \mathbb{P} W$ and let $\tilde{X}=\mathcal{V}\left(\mathcal{I}_{d}(X)\right)$ (notation).

$$
\mathcal{V}\left(\mathcal{I}_{d}(X) \otimes S^{d} V^{*}\right)=\operatorname{Seg}(\tilde{X} \times \mathbb{P} V) \sqcup \bigcup_{L \subset \tilde{X}} \sigma_{d}(\mathbb{P} L \times \mathbb{P} V)
$$

where $L \subset \tilde{X}$ are linear subspaces.

What does this buy us?

Consequence

Assume that $M=\bigoplus_{i} M_{\hat{i}} \otimes S^{d} V_{i} \subset S^{d}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ and $V_{i} \simeq \mathbb{C}^{2}$, then

$$
\mathcal{V}(M)=\cap_{i=1}^{n}\left(\bigcup_{L \subset V\left(M_{\hat{i}^{i}}\right)} \mathbb{P}\left(L \otimes V_{i}\right)\right) .
$$

- Suppose $z \in \mathcal{V}(M)=\mathcal{V}\left(\bigoplus_{i} M_{\hat{i}} \otimes S^{d} V_{i}\right)$, and assume for induction that $\mathcal{V}\left(M_{\hat{i}}\right) \simeq Z_{n-1}$.
- Then our geometric realization gives n different expressions for z,

$$
z=\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}+\varphi\left(\left[B^{(i)}, s^{(i)}\right]\right) \otimes x_{i}^{1}, \quad \text { (no summation) }
$$

where $A^{(i)}, B^{(i)}$ are $n-1 \times n-1$ matrices, and $\left\{x_{i}^{0}, x_{i}^{1}\right\}=V_{i}$.

- If we can use this information to build an $n \times n$ matrix A so that $\varphi([A, t])=z$, we will have proved the theorem.

Building a matrix

We have n expressions

$$
z=\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}+\varphi\left(\left[B^{(i)}, s^{(i)}\right]\right) \otimes x_{i}^{1}
$$

and the term $\varphi\left(\left[A^{(1)}, t^{(1)}\right]\right) \otimes x_{1}^{0}$ can be thought of as the principal minors (not involving the first row and column) of the matrix

$$
A\left(\overrightarrow{x_{1}}\right)=\left(\begin{array}{ccccc}
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, n} \\
x_{1,2} & a_{1,2}^{(1)} & a_{2,2}^{(1)} & \ldots & a_{2, n}^{(1)} \\
& \vdots & \vdots & \vdots & \\
& a_{1, n}^{(1)} & a_{2, n}^{(1)} & \ldots & a_{n, n}^{(1)}
\end{array}\right)
$$

where $x_{1, i}$ are variables, and the entries of $A^{(1)}=\left(a_{i, j}^{(1)}\right)$, are fixed. The other expressions $\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}$ have a similar interpretation.

Building a matrix

- The 1×1 principal minors determine the diagonal entries and the 2×2 principal minors are all of the form $a_{i, i} a_{j, j}-a_{i, j}^{2}$ the 2×2 principal minors determine the off diagonal entries up to sign.
- We know that the principal minors $\Delta_{I}\left(A\left(\overrightarrow{x_{i}}\right)\right)$ and $\Delta_{I}\left(A\left(\vec{x}_{j}\right)\right)$ agree whenever $i, j \notin I$.
- Our question comes down to whether we can make consistent choices so that the matrices $A\left(\overrightarrow{x_{i}}\right)$ agree.
- It suffices to prove that if we fix $A^{(1)}$, that we can choose $\overrightarrow{x_{1}}$ and $A^{(i)}$ so that all of the principal minors agree where the matrices overlap.
- Construct $A\left(\vec{x}_{i}\right)^{(j)}$, by deleting the $j^{\text {th }}$ row and column.
- By induction, it suffices to consider

$$
A\left(x_{1,2}\right)=\left(\begin{array}{ccccc}
a_{1,1} & x_{1,2} & a_{1,3} & \ldots & a_{1, n} \\
x_{1,2} & a_{2,2} & \ldots & \ldots & a_{2, n} \\
a_{1,3} & \vdots & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
a_{1, n} & a_{2, n} & \cdots & & a_{n, n}
\end{array}\right)
$$

and show that we can pick $x_{1,2}$ so that all of the principal minors of $A\left(\overrightarrow{x_{i}}\right)^{(j)}$ agree.

- We will have only determined that the matrix $A\left(x_{1,2}\right)$ has all the correct principal minors (matching our point $z \in \mathcal{V}(M)$) except possibly the determinant.

Almost...

Lemma (The Almost Lemma, $n \geq 4$.)

Suppose $[z]=\left[z_{l} X^{\prime}\right] \in \mathcal{V}(M)$, and $\left[v_{A}\right]=\left[v_{A, I} X^{\prime}\right]=[\varphi([A, t])] \in Z_{n}$ are such that $z_{I}=v_{A, I}$ for all $I \neq[1, \ldots, 1]$. If $z_{[1, \ldots, 1]} \neq v_{A,[1, \ldots, 1]}$, then

$$
[z] \in \bigcup_{\substack{\left|I_{s}\right| \leq 2 \\ 1 \leq s \leq m}}\left(\operatorname{Seg}\left(\mathbb{P} V_{l_{1}} \times \cdots \times \mathbb{P} V_{l_{m}}\right)\right) \subset Z_{n} .
$$

We have essentially made a reduction to a problem in a single variable. Once the obstructions to solving this problem are identified as a G-module, the proof of this lemma is an application of the geometric characterization above.

Almost...but what does this buy me?

The lemma says that $\operatorname{Seg}\left(\mathbb{P} V_{l_{1}} \times \cdots \times \mathbb{P} V_{l_{m}}\right) \subset Z_{n}$.

- In fact, every point in $\operatorname{Seg}\left(\mathbb{P} V_{l_{1}} \times \cdots \times \mathbb{P} V_{l_{m}}\right) \subset Z_{n}$ comes from a block diagonal matrix with only 1×1 and 2×2 blocks.
- Such a matrix is a special case of a symmetric tri-diagonal matrix, and it's a fact that none of its principal minors depend on the sign of the off diagonal terms.
- We use this fact iteratively in our induction for the proof of the final lemma.

Concluding Remarks

- This problem shows how representation theory and geometry can be used to prove exciting new results.
- We resolved the set theoretic version of the Holtz-Sturmfels conjecture, but more work needs to be done in order to prove the ideal theoretic version.
- Thank you for attending! Special thanks to my thesis advisor, J.M. Landsberg and to the rest of my thesis committee.

Applications outside of geometry

- Spectral graph theory.
- Probability theory - covariance of random variables.
- Statistical physics - determinantal point processes.
- Matrix theory - P-matrices, GKK- τ matrices.

