Symmetrization of Principal Minors

Principal Minor Assignment Problem

Question (Principal Minor Assignment Problem)

Given $v \in \mathbb{C}^{2^{n}}$, does there exist an $n \times n$ matrix A such that v is the vector of all principal minors of A ?

There's a simple test if only we knew generators of the ideal of relations amongst principal minors. Applications outside of geometry

- Spectral graph theory.
- Probability theory - covariance of random variables.
- Statistical physics - determinantal point processes.
- Matrix theory - P-matrices, GKK- τ matrices.

Interesting problem, see [Borodin-Rains], [Kenyon-Pemantle], [Lin-Sturmfels], [Holtz-Sturmfels], [Rising-Kulesza-Taskar]...

Principal Minor Coordinates on $\left(\mathbb{C}^{2}\right)^{\otimes n}$ and $S^{n} \mathbb{C}^{2}$

$\left(\mathbb{C}^{2}\right)^{\otimes n}=\operatorname{span}\left\{D_{I} \mid I \subset[n]\right\}$, with an action of GL(2) $)^{\times n}$.
Coordinate functions on the variety of principal minors:

$$
\begin{array}{ccc}
\mathbb{C}^{n \times n} & \rightarrow & \left(\mathbb{C}^{2}\right)^{\otimes n} \\
A & \mapsto & \left(D_{I}(A)\right)=\left(\Delta_{I}(A)\right) .
\end{array}
$$

$S^{n} \mathbb{C}^{2}=\operatorname{span}\left\{d_{s} \mid 0 \leq s \leq n\right\}$, with an action of $\mathrm{GL}(2) \hookrightarrow_{\Delta} \mathrm{GL}(2)^{\times n}$.
Get $S^{n} \mathbb{C}^{2} \hookrightarrow\left(\mathbb{C}^{2}\right)^{\otimes n}$ by seting $d_{s}=D_{I}=D_{J}$ whenever $|I|=|J|=s$.
This process is called symmetrization.
Coordinate functions on the variety of symmetrized principal minors: Assume A is such that $D_{I}(A)=D_{J}(A)$ whenever $|I|=|J|=s$.

$$
\begin{array}{clc}
\mathbb{C}^{n \times n} & \rightarrow & S^{n} \mathbb{C}^{2} \\
A & \mapsto & \left(d_{k}(A)\right)=\left(\Delta_{[k]}(A)\right) .
\end{array}
$$

For this whole talk, $D_{\emptyset}=d_{0}=1$.

Cycle-sums and principal minors (Following Lin-Sturmeles)

Another set of coordinate functions on $\left(\mathbb{C}^{2}\right)^{\otimes n}$ and $S^{n} \mathbb{C}^{2}$.

Definition

For $A \in \mathbb{C}^{n \times n}$ and $I \subset[n]$ the cycle-sum C_{I} is

$$
C_{I}(A):=\sum_{\left\{i_{1}, \ldots, i_{k}\right\}=I,} a_{i_{1}, i_{2}=\min I} a_{i_{2}, i_{3}} \cdots a_{i_{k-1}, i_{k}} a_{i_{k}, i_{1}}
$$

Example

The first few cycle-sums are the following.

$$
\begin{array}{cll}
C_{\emptyset}(A) & = & 1 \\
C_{\{1\}}(A) & = & a_{1,1} \\
C_{\{1,2\}}(A) & = & a_{1,2} a_{2,1} \\
C_{\{1,2,3\}}(A)= & a_{1,2} a_{2,3} a_{3,1}+a_{1,3} a_{3,2} a_{2,1} \\
C_{\{1,2,3,4\}}(A)= & a_{1,2} a_{2,3} a_{3,4} a_{4,1}+a_{1,3} a_{3,2} a_{2,4} a_{4,1}+a_{1,4} a_{4,2} a_{2,3} a_{3,1} \\
& +a_{1,2} a_{2,4} a_{4,3} a_{3,1}+a_{1,3} a_{3,4} a_{4,2} a_{2,1}+a_{1,4} a_{4,3} a_{3,2} a_{2,1}
\end{array}
$$

Proposition ([Prop. 4, Lin-Sturmfels])

Fix $n \in \mathbb{Z}^{+}$, and rings $R_{C}=\mathbb{C}\left[C_{S} \mid S \subset[n]\right]$ and $R_{D}=\mathbb{C}\left[D_{S} \mid S \subset[n]\right]$. We have a (lower triangular) non-linear isomorphism of rings given by

$$
\begin{gather*}
D_{S}=\sum_{S_{1} S_{2} \cdots S_{k} \in \Pi_{S}}(-1)^{|S|-k} C_{S_{1}} C_{S_{2}} \cdots C_{S_{k}}, \tag{1}\\
C_{S}=\sum_{S_{1} S_{2} \cdots S_{k} \in \Pi_{S}}(-1)^{|S|-k}(k-1)!D_{S_{1}} D_{S_{2}} \cdots D_{S_{k}}, \tag{2}
\end{gather*}
$$

where Π_{S} is the lattice of set-partitions on S, and $D_{\emptyset}=C_{\emptyset}=1$.

Lin and Sturmfels' proof.

The transition $R_{D} \rightarrow R_{C}$ is Leibnitz's formula.
$R_{C} \rightarrow R_{D}$ follows by Möbius inversion on the lattice of set-partitions [Prop. 3.7.1, Stanley].

Symmetrized cycle-sums and principal minors

Set $C_{I}=C_{J}=c_{s}$ whenever $|I|=|J|=s$.
Get another set of coordinate functions on $S^{n}\left(\mathbb{C}^{2}\right):\left\{c_{i} \mid 0 \leq i \leq n\right\}$.

Example

$$
\begin{aligned}
& d_{1}=c_{1} \\
& d_{2}=c_{1}^{2}-c_{2} \\
& d_{3}=c_{1}^{3}-3 c_{1} c_{2}+c_{3} \\
& d_{4}=c_{1}^{4}-6 c_{1}^{2} c_{2}+3 c_{2}^{2}+4 c_{1} c_{3}-c_{4} \\
& d_{5}=c_{1}^{5}-10 c_{1}^{3} c_{2}+15 c_{1} c_{2}^{2}+10 c_{1}^{2} c_{3}-10 c_{2} c_{3}-5 c_{1} c_{4}+c_{5} \\
& d_{6}=c_{1}^{6}-15 c_{1}^{4} c_{2}+45 c_{1}^{2} c_{2}^{2}+20 c_{1}^{3} c_{3}-15 c_{2}^{3}-60 c_{1} c_{2} c_{3}-15 c_{1}^{2} c_{4}+10 c_{3}^{2}+15 c_{2} c_{4}+6 c_{1} c_{5}-c_{6} \\
& c_{1}=d_{1} \\
& c_{2}=d_{1}^{2}-d_{2} \\
& c_{3}=2 d_{1}^{3}-3 d_{1} d_{2}+d_{3} \\
& c_{4}=6 d_{1}^{4}-12 d_{1}^{2} d_{2}+3 d_{2}^{2}+4 d_{1} d_{3}-d_{4} \\
& c_{5}=24 d_{1}^{5}-60 d_{1}^{3} d_{2}+30 d_{1} d_{2}^{2}+20 d_{1}^{2} d_{3}-10 d_{2} d_{3}-5 d_{1} d_{4}+d_{5} \\
& c_{6}=120 d_{1}^{6}-360 d_{1}^{4} d_{2}+270 d_{1}^{2} d_{2}^{2}+120 d_{1}^{3} d_{3}-30 d_{2}^{3}-120 d_{1} d_{2} d_{3}-30 d_{1}^{2} d_{4}+10 d_{3}^{2}+15 d_{2} d_{4}+6 d_{1} d_{5}-d_{6}
\end{aligned}
$$

Symmetrized cycle-sums and principal minors

Proposition

Symmetrized cycle sums and principal minors transform as

$$
\begin{gather*}
d_{s}=\sum_{\alpha \vdash s}(-1)^{s-|\alpha|} p_{\alpha} c^{\alpha} \tag{3}\\
c_{s}=\sum_{\alpha \vdash s}(-1)^{s-|\alpha|}(|\alpha|-1)!p_{\alpha} d^{\alpha}, \tag{4}
\end{gather*}
$$

where

$$
p_{\alpha}=\frac{s!}{1!^{m_{1}} m_{1}!2!^{m_{2}} m_{2}!\cdots s!^{m_{s}} m_{s}!}
$$

is the number of set-partitions of $[s]$ with type $(\alpha)=\left(m_{1}, \ldots, m_{s}\right)$.

Proof.

We simply combine the symmetrized terms in (1) and (2) to get (3) and (4). The formula for p_{α} is [Eq. 3.37, Stanley].

Examples: 2×2 symmetric matrices

Define a map φ : symmetric matrices \rightarrow principal minors:

$$
\left.\begin{array}{rl}
\varphi: S^{2} \mathbb{C}^{2} & \rightarrow \\
\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right) & \mapsto
\end{array}\right)=\left[\begin{array}{c}
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
\left(1, a, b, a b-c^{2}\right]
\end{array}\right.
$$

When can we go backwards? Given $[w, x, y, z]$ is there a 2×2 matrix that has these principal minors? Need to solve: (WLOG assume $w=1$)

$$
\begin{aligned}
& \quad x=a \\
& \quad y=b \\
& z=a b-c^{2} \quad \Rightarrow \quad c= \pm \sqrt{x y-z}
\end{aligned}
$$

Then

$$
\varphi\left(\begin{array}{cc}
x & \pm \sqrt{x y-z} \\
\pm \sqrt{x y-z} & y
\end{array}\right)=[1, x, y, z]
$$

Conclude: Even in the $n \times n$ case, the $0 \times 0,1 \times 1$, and 2×2 minors determine a symmetric matrix up to the signs of the off-diagonal terms.

Principal Minors: 3×3 symmetric matrices

$$
\begin{gathered}
\varphi: S^{2} \mathbb{C}^{2} \\
\varphi\left(\begin{array}{lll}
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \\
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right)=
\end{gathered}
$$

$$
\left[\begin{array}{l}
D_{\emptyset}=1 \\
D_{\{1\}}=x_{11} \\
D_{\{2\}}=x_{22}, \\
D_{\{1,2\}}=\left(x_{11} x_{22}-x_{12}^{2}\right) \\
D_{\{3\}}=x_{33} \\
D_{\{1,3\}}=\left(x_{11} x_{33}-x_{13}^{2}\right) \\
D_{\{2,3\}}=\left(x_{22} x_{33}-x_{23}^{2}\right) \\
D_{\{1,2,3\}}=\left(x_{11} x_{22} x_{33}-x_{11} x_{23}^{2}-x_{22} x_{13}^{2}-x_{33} x_{12}^{2}+2 x_{12} x_{13} x_{23}\right)
\end{array}\right]
$$

Given $\left[D_{\emptyset}, D_{\{1\}}, D_{\{2\}}, D_{\{1,2\}}, D_{\{3\}}, D_{\{1,3\}}, D_{\{2,3\}}, D_{\{1,2,3\}}\right]$ is there a matrix that maps to it? Count parameters: 6 versus 7 - there must be some relation that holds!
3×3 principal minors of symmetric matrices

Theorem (Holtz-Sturmfels 2007, Cayley 1845)

All relations among the principal minors of a 3×3 matrix are generated by Cayley's hyperdeterminant of format $2 \times 2 \times 2$:

$$
\begin{gathered}
\text { Det }:=D_{\emptyset}^{2} D_{\{1,2,3\}}^{2}+D_{\{1\}}^{2} D_{\{2,3\}}^{2}+D_{\{2\}}^{2} D_{\{1,3\}}^{2}+D_{\{3\}}^{2} D_{\{1,2\}}^{2} \\
+4\left(D_{\{1\}} D_{\{2\}} D_{\{3\}} D_{\{1,2,3\}}+D_{\emptyset} D_{\{1,2\}} D_{\{1,3\}} D_{\{2,3\}}\right) \\
-2\binom{D_{\{1\}} D_{\{2\}} D_{\{1,3\}} D_{\{2,3\}}+D_{\{1\}} D_{\{1,2\}} D_{\{3\}} D_{\{2,3\}}+D_{\{2\}} D_{\{1,2\}} D_{\{3\}} D_{\{1,3\}}}{+D_{\emptyset} D_{\{1\}} D_{\{2,3\}} D_{\{1,2,3\}}+D_{\emptyset} D_{\{2\}} D_{\{1,3\}} D_{\{1,2,3\}}+D_{\emptyset} D_{\{1,2\}} D_{\{3\}} D_{\{1,2,3\}}} .
\end{gathered}
$$

In cycle-sums C_{I} the $2 \times 2 \times 2$ hyperdeterminant is

$$
\text { Det }=-4 C_{\{1,2\}} C_{\{1,3\}} C_{\{2,3\}}+C_{\{1,2,3\}}^{2},
$$

see [Sturmfels-Zwiernik] since in this case cycle-sums correspond to binary cumulants.

Symmetrized principal minors

[Grinshpan, Kaliuzhnyi-Verbovetskyi, Woerdeman] studied the symmetrized principal minor problem in relation to a question on determinantal representations of multivariate polynomials.
For $A \in \mathbb{C}^{n \times n}, \Delta_{I}(A)$ the principal minor of A with row/column sets I.
A has symmetrized principal minors if $\Delta_{I}(A)=\Delta_{J}(A)$ when $|I|=|J|$.
Setting $D_{S}=d_{|S|}$ and $D_{\emptyset}=1$, the hyperdeterminant symmetries to

$$
S D e t=-3 d_{1}^{2} d_{2}^{2}+4 d_{1}^{3} d_{3}+4 d_{2}^{3}-6 d_{1} d_{2} d_{3}+d_{3}^{2}
$$

the discriminant of the cubic $1+3 d_{1} x+3 d_{2} x^{2}+d_{3} x^{3}$.
A curious fact: Notice that

$$
c_{2}=d_{1}^{2}-d_{2}, \quad \text { and } \quad c_{3}=2 d_{1}^{3}-3 d_{1} d_{2}+d_{3},
$$

In cycle sums

$$
S D e t=-4 c_{2}^{3}+c_{3}^{2}
$$

(the syzygy amongst the covariants of the binary cubic with unit constant term).

General matrices with symmetrized cycle-sums

Proposition

Let $A \in \mathbb{C}^{n \times n}$ be a matrix with the symmetrized cycle-sums property.
(1) Diagonal Modification: The matrix $A-\lambda I_{n}$ has symmetrized cycle-sums; its diagonal entries are $c_{1}\left(A-\lambda I_{n}\right)=\lambda-c_{1}(A)$; and the k-th symmetrized cycle-sum $c_{k}\left(A-c_{1} I_{n}\right)=c_{k}(A)$ for all $k \geq 2$.
(2) Diagonal Similarity: For any nonsingular $n \times n$ diagonal matrix D, the diagonal conjugation $D A D^{-1}$ preserves all cycle-sums; so $c_{k}\left(D A D^{-1}\right)=c_{k}(A)$ for all $k \geq 1$.
(Homogeneity: For nonzero $\lambda \in \mathbb{C}, \lambda A$ still has symmetrized cycle-sums, and $c_{k}(\lambda A)=\lambda^{k} c_{k}(A)$ for all $k \geq 1$.
(1) Permutation Similarity: For any permutation matrix P, the permutation conjugation $P A P^{-1}$ also has the symmetrized cycle-sums property, and $c_{k}\left(P A P^{-1}\right)=c_{k}(A)$ for all $k \geq 1$.

Use this symmetry to put the matrix A in the nicest possible format.

Symmetric matrices with symmetrized cycle-sums

Proposition

If A is symmetric, then A is conjugate to

$$
\lambda \mathbb{1}_{n}+\mu I_{n}, \quad \text { for } \lambda, \mu \in \mathbb{C},
$$

where $\mathbb{1}_{n}$ denotes the $n \times n$ all-ones matrix. We have the following parameterizations:

$$
\begin{aligned}
d_{k}\left(\lambda \mathbb{1}_{n}+\mu I_{n}\right) & =(\mu-\lambda)^{k-1} \cdot(\mu+k \cdot \lambda), \\
c_{k}\left(\lambda \mathbb{1}_{n}+\mu I_{n}\right) & =(k-1)!\cdot \lambda^{k}
\end{aligned}
$$

The variety of symmetrized principal minors of symmetric matrices is toric.

Theorem (Huang-Oeding)

Let \mathcal{J}_{n}° denote the ideal $Z_{n}^{\circ} \cap S^{n} \mathbb{C}^{2} \cap U_{c_{0}=1}$. If $n=3$ then \mathcal{J}_{n}° is prime, and generated by a single equation,

$$
\mathcal{J}_{3}^{\circ}=\left\langle-4 c_{2}^{3}+c_{3}^{2}\right\rangle
$$

For $n \geq 4 \mathcal{J}_{n}^{\circ}$ has two components in its primary decomposition. One primary component has radical $\left\langle c_{s} \mid 2 \leq s \leq n\right\rangle$. The other component is prime, and generated by the following $\frac{(n-3) n}{2}$ binomial quadrics:

$$
\left.\begin{array}{l}
\left\{(i+j-1)!c_{i} c_{j}-(i-1)!(j-1)!c_{i+j} \mid 2 \leq i \leq j \leq n, \quad i+j \leq n\right\} \\
\cup\left\{(k-1)!(l-1)!c_{i} c_{j}-(i-1)!(j-1)!c_{k} c_{l} \left\lvert\, \begin{array}{c}
2 \leq i, j, k, l \leq n, i+j=k+l \\
i<k, i \leq j, k \leq l
\end{array}\right.\right.
\end{array}\right\} .
$$

Symmetrized principal minors of skew-symmetric matrices

Proposition

If A is skew-symmetric, A is conjugate to

$$
\lambda \mathbb{1}_{n}^{\wedge}, \quad \text { or } \quad \lambda\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
-1 & 0 & 1 & -1 \\
-1 & -1 & 0 & 1 \\
-1 & 1 & -1 & 0
\end{array}\right) \quad(\text { for } n=4 \text { only }), \quad \text { for } \quad \lambda \in \mathbb{C},
$$

where $\mathbb{1}_{n}^{\wedge}$ denotes the $n \times n$ skew-symmetric matrix with 1's above the diagonal. We have the following parameterizations:

$$
d_{k}\left(\mathbb{1}_{n}^{\wedge}\right)=1 \quad \text { for } k \geq 2,
$$

$$
c_{k}\left(\mathbb{1}_{n}^{\wedge}\right)=(-1)^{s / 2} E_{k-1}, \quad \text { where } E_{k} \text { is the Euler number. }
$$

Note: if A is skew-symmetric and has symmetrized cycle-sums $c_{2 k+1}=d_{2 k+1}=0$.

Theorem (Huang-Oeding)

Suppose $n \geq 3$ and let \mathcal{J}_{n}^{\wedge} denote the ideal of relations among the symmetrized cycle-sums of even sized cycles for a generic skew-symmetric matrix $A \in \Lambda^{2} \mathbb{C}^{n} . \mathcal{J}_{4}^{\wedge}$ decomposes as the intersection of two prime components

$$
\mathcal{J}_{4}^{\wedge}=\left\langle-2 c_{2}^{2}+c_{4}\right\rangle \quad \cap \quad\left\langle-6 c_{2}^{2}-c_{4}\right\rangle .
$$

\mathcal{J}_{5}^{\wedge} has primary decomposition with two minimal primes:

$$
\left\langle-2 c_{2}^{2}+c_{4}\right\rangle \quad \text { and } \quad\left\langle c_{2}, c_{4}\right\rangle
$$

When $n \geq 5$ we have either $d_{s}=0$ for all s, or $d_{2 k}=1$ and $d_{2 k+1}=0$ for all $k \leq n / 2$. The cycle-sum relations can be deduced from this.

The proof of the first cases is by direct computation in Macaulay2. The general case is proved by induction using Schur complements.

Theorem (Huang-Oeding)

If A is general, then

- If $n \geq 3$, and $c_{1}=c_{2}=0$, then one of the following holds
(1) A is conjugate to a strictly upper triangular matrix, where

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

(2) A is conjugate to an matrix representing an n-cycle and

$$
c_{1}=c_{2}=\cdots=c_{n-1}=0, \quad c_{n} \neq 0
$$

- If $c_{2} \neq 0$ and $c_{1}=c_{3}=0$, then A is conjugate to a skew-symmetric matrix with symmetrized principal minors.
- if $c_{1}=0$, and $c_{2} c_{3} \neq 0$, then \ldots

Theorem (Huang-Oeding (Continued))

- if $c_{1}=0$, and $c_{2} c_{3} \neq 0$, then A is conjugate to $\lambda T_{n}(x)$, where $T_{n}(x)$ is the following Toeplitz matrix for $x \in \mathbb{C}^{*}$:

$$
T_{n}(x):=\left(\begin{array}{cccccc}
0 & 1 & x & x^{2} & \cdots & x^{n-2} \\
-1 & 0 & 1 & x & \cdots & x^{n-3} \\
-\frac{1}{x} & -1 & 0 & 1 & \cdots & x^{n-4} \\
-\frac{1}{x^{2}} & -\frac{1}{x} & -1 & 0 & \cdots & x^{n-5} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{1}{x^{n-2}} & -\frac{1}{x^{n-3}} & -\frac{1}{x^{n-4}} & -\frac{1}{x^{n-5}} & \cdots & 0
\end{array}\right),
$$

where the (i, j) entry of $T_{n}(x)$ is exactly $\operatorname{sgn}(j-i) \cdot x^{j-i-\operatorname{sgn}(j-i)}$. Moreover $\lambda^{2}=-c_{2}$ and $\lambda^{3}\left(x-\frac{1}{x}\right)=c_{3}$, and

$$
c_{s}\left(T_{n}(x)\right)=x^{-s} E_{s-1}\left(-x^{2}\right),
$$

where $E_{n}(x)$ is the n-th Eulerian polynomial.

$$
d_{s}\left(T_{n}(x)\right)=\frac{\left(x^{2}\right)^{s-1}+(-1)^{s}}{x^{s-2}\left(x^{2}+1\right)}, \quad \text { or } \quad\left(x^{2}+1\right) d_{s}\left(x \cdot T_{n}(x)\right)=x^{2 s}+(-1)^{s} x^{2} .
$$

Theorem (Huang-Oeding)

Let $n \geq 3$ and suppose $A \in \mathbb{C}^{n \times n}$ has symmetrized cycle-sums. Let \mathcal{J}_{n} denote the ideal of relations among the symmetrized cycle-sums of A.
\mathcal{J}_{3} is empty.
\mathcal{J}_{3} is empty. \mathcal{J}_{4} decomposes as the intersection of two prime components:

$$
\left\langle 2 c_{2}^{3}+c_{3}^{2}-c_{2} c_{4}\right\rangle \quad \text { and } \quad\left\langle c_{3}, 6 c_{2}^{2}+c_{4}\right\rangle
$$

When $n \geq 5, \mathcal{J}_{n}$ has two components: one with radical $\left\langle c_{2}, \ldots, c_{n}\right\rangle$ (with complicated scheme structure), and the ideal generated by the maximal minors of

$$
\left(\begin{array}{ccccc}
d_{0} & d_{1} & d_{2} & \ldots & d_{n-2} \\
d_{1} & d_{2} & d_{3} & \ldots & d_{n-1} \\
d_{2} & d_{3} & d_{4} & \ldots & d_{n}
\end{array}\right)
$$

Computational Experiments

Here are the results of our tests for $S^{2} \mathbb{C}^{n}$.

n	I_{1}	I_{2}	$\sqrt{I_{2}}$	time
3	1 cubic	n / a	n / a	$<0.1 \mathrm{sec}$.
4	2 quadrics	1 linear, 1 quadric, 2 cubics	$\left\langle c_{2}, c_{3}, c_{4}\right\rangle$	$<0.1 \mathrm{sec}$.
5	5 quadrics	1 linear, 3 quadrics, 3 cubics	$\left\langle c_{2}, c_{3}, c_{4}, c_{5}\right\rangle$	$<0.2 \mathrm{sec}$.
6	9 quadrics	1 linear, 6 quadrics, 4 cubics	$\left\langle c_{2}, \ldots, c_{6}\right\rangle$	0.6 sec.
7	14 quadrics	1 linear, 10 quadrics, 5 cubics	$\left\langle c_{2}, \ldots, c_{7}\right\rangle$	13 sec.
8	20 quadrics	1 linear, 15 quadrics, 6 cubics	$\left\langle c_{2}, \ldots,, c_{8}\right\rangle$	8762 sec.

Computations done on a Server: 241.6 GHz processors (not all are used at all times in M2) and 141 GB of RAM.

Computational Experiments

Here are the results of our tests for $\mathbb{C}^{n \times n}$.

n	I_{1}	I_{2}	$\sqrt{I_{2}}$	time
3	n / a	n / a	n / a	$<0.1 \mathrm{sec}$.
4	1 cubic	1 linear, 2 quadric	1 linear, 2 quadric	$<1 \mathrm{sec}$.
5	4 cubics	1 linear, 2 quadrics, 2 cubics, 1 quartic, 1 quintic	$\left\langle c_{2}, c_{3}, c_{4}, c_{5}\right\rangle$	5000 sec.

