Symmetrization of Principal Minors

Principal Minor Assignment Problem

Question (Principal Minor Assignment Problem)

Given $v \in \mathbb{C}^{2^n}$, does there exist an $n \times n$ matrix A such that v is the vector of all principal minors of A?

There's a simple test if only we knew generators of the ideal of relations amongst principal minors. Applications outside of geometry

- Spectral graph theory.
- Probability theory covariance of random variables.
- Statistical physics determinantal point processes.
- Matrix theory P-matrices, GKK- τ matrices.

Interesting problem, see [Borodin-Rains], [Kenyon-Pemantle], [Lin-Sturmfels], [Holtz-Sturmfels], [Rising-Kulesza-Taskar]...

Principal Minor Coordinates on $(\mathbb{C}^2)^{\otimes n}$ and $S^n \mathbb{C}^2$

 $(\mathbb{C}^2)^{\otimes n} = \operatorname{span}\{D_I \mid I \subset [n]\}, \text{ with an action of } \operatorname{GL}(2)^{\times n}.$ Coordinate functions on the variety of principal minors:

 $\begin{array}{cccc} \mathbb{C}^{n \times n} & \to & (\mathbb{C}^2)^{\otimes n} \\ A & \mapsto & (D_I(A)) = (\Delta_I(A)). \end{array}$

 $S^n \mathbb{C}^2 = \operatorname{span}\{d_s \mid 0 \le s \le n\},$ with an action of $\operatorname{GL}(2) \hookrightarrow_\Delta \operatorname{GL}(2)^{\times n}$.

Get $S^n \mathbb{C}^2 \hookrightarrow (\mathbb{C}^2)^{\otimes n}$ by setting $d_s = D_I = D_J$ whenever |I| = |J| = s.

This process is called *symmetrization*.

Coordinate functions on the variety of symmetrized principal minors: Assume A is such that $D_I(A) = D_J(A)$ whenever |I| = |J| = s.

$$\begin{array}{rccc} \mathbb{C}^{n \times n} & \to & S^n \mathbb{C}^2 \\ A & \mapsto & (d_k(A)) = (\Delta_{[k]}(A)) \end{array}$$

For this whole talk, $D_{\emptyset} = d_0 = 1$.

Cycle-sums and principal minors (Following Lin-Sturmfels) Another set of coordinate functions on $(\mathbb{C}^2)^{\otimes n}$ and $S^n \mathbb{C}^2$.

Definition

For $A \in \mathbb{C}^{n \times n}$ and $I \subset [n]$ the cycle-sum C_I is $C_I(A) := \sum_{\{i_1, \dots, i_k\} = I, \quad i_1 = \min I} a_{i_1, i_2} a_{i_2, i_3} \cdots a_{i_{k-1}, i_k} a_{i_k, i_1}.$

Example

The first few cycle-sums are the following.

$$\begin{array}{rcl} C_{\emptyset}(A) & = & 1 \\ C_{\{1\}}(A) & = & a_{1,1} \\ C_{\{1,2\}}(A) & = & a_{1,2}a_{2,1} \\ C_{\{1,2,3\}}(A) & = & a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{3,2}a_{2,1} \\ C_{\{1,2,3,4\}}(A) & = & a_{1,2}a_{2,3}a_{3,4}a_{4,1} + a_{1,3}a_{3,2}a_{2,4}a_{4,1} + a_{1,4}a_{4,2}a_{2,3}a_{3,1} \\ & & + a_{1,2}a_{2,4}a_{4,3}a_{3,1} + a_{1,3}a_{3,4}a_{4,2}a_{2,1} + a_{1,4}a_{4,3}a_{3,2}a_{2,1} \end{array}$$

Proposition ([Prop. 4, Lin-Sturmfels])

Fix $n \in \mathbb{Z}^+$, and rings $R_C = \mathbb{C}[C_S \mid S \subset [n]]$ and $R_D = \mathbb{C}[D_S \mid S \subset [n]]$. We have a (lower triangular) non-linear isomorphism of rings given by

$$D_S = \sum_{S_1 S_2 \cdots S_k \in \Pi_S} (-1)^{|S|-k} C_{S_1} C_{S_2} \cdots C_{S_k}, \qquad (1$$

$$C_S = \sum_{S_1 S_2 \cdots S_k \in \Pi_S} (-1)^{|S|-k} (k-1)! D_{S_1} D_{S_2} \cdots D_{S_k},$$
(2)

where Π_S is the lattice of set-partitions on S, and $D_{\emptyset} = C_{\emptyset} = 1$.

Lin and Sturmfels' proof.

The transition $R_D \to R_C$ is Leibnitz's formula. $R_C \to R_D$ follows by Möbius inversion on the lattice of set-partitions [Prop. 3.7.1, Stanley].

Symmetrized cycle-sums and principal minors

Set $C_I = C_J = c_s$ whenever |I| = |J| = s. Get another set of coordinate functions on $S^n(\mathbb{C}^2)$: $\{c_i \mid 0 \le i \le n\}$.

Example

 $d_1 = c_1$ $d_2 = c_1^2 - c_2$ $d_3 = c_1^3 - 3c_1c_2 + c_3$ $d_4 = c_1^4 - 6c_1^2c_2 + 3c_2^2 + 4c_1c_3 - c_4$ $d_5 = c_1^5 - 10c_1^3c_2 + 15c_1c_2^2 + 10c_1^2c_3 - 10c_2c_3 - 5c_1c_4 + c_5$ $d_{6} = c_{6}^{6} - 15c_{1}^{4}c_{2} + 45c_{1}^{2}c_{2}^{2} + 20c_{1}^{3}c_{3} - 15c_{3}^{2} - 60c_{1}c_{2}c_{3} - 15c_{1}^{2}c_{4} + 10c_{3}^{2} + 15c_{2}c_{4} + 6c_{1}c_{5} - c_{6}$ $c_1 = d_1$ $c_2 = d_1^2 - d_2$ $c_3 = 2d_1^3 - 3d_1d_2 + d_3$ $c_4 = 6d_1^4 - 12d_1^2d_2 + 3d_2^2 + 4d_1d_3 - d_4$ $= 24d_1^5 - 60d_1^3d_2 + 30d_1d_2^2 + 20d_1^2d_3 - 10d_2d_3 - 5d_1d_4 + d_5$ C_{5}

Symmetrized cycle-sums and principal minors

Proposition

Symmetrized cycle sums and principal minors transform as

$$d_s = \sum_{\alpha \vdash s} (-1)^{s - |\alpha|} p_\alpha \ c^\alpha, \tag{3}$$

$$c_s = \sum_{\alpha \vdash s} (-1)^{s - |\alpha|} (|\alpha| - 1)! p_\alpha d^\alpha,$$

where

$$p_{\alpha} = \frac{s!}{1!^{m_1}m_1! 2!^{m_2}m_2! \cdots s!^{m_s}m_s!}.$$

is the number of set-partitions of [s] with $type(\alpha) = (m_1, \ldots, m_s)$.

Proof.

We simply combine the symmetrized terms in (1) and (2) to get (3) and (4). The formula for p_{α} is [Eq. 3.37, Stanley].

L. Oeding (Auburn University)

Symmetrization of Principal Minors

(4)

Examples: 2×2 symmetric matrices

Define a map φ : symmetric matrices \rightarrow principal minors:

$$\begin{array}{ccc} \varphi \colon S^2 \mathbb{C}^2 & \to & \mathbb{C}^2 \otimes \mathbb{C}^2 \\ \begin{pmatrix} a & c \\ c & b \end{pmatrix} & \mapsto & = [1, a, b, ab - c^2] \end{array}$$

When can we go backwards? Given [w, x, y, z] is there a 2×2 matrix that has these principal minors? Need to solve: (WLOG assume w = 1)

$$\begin{array}{l} x = a \\ y = b \\ z = ab - c^2 \quad \Rightarrow \quad c = \pm \sqrt{xy - z} \end{array}$$

Then

$$\varphi \begin{pmatrix} x & \pm \sqrt{xy-z} \\ \pm \sqrt{xy-z} & y \end{pmatrix} = [1, x, y, z]$$

Conclude: Even in the $n \times n$ case, the 0×0 , 1×1 , and 2×2 minors determine a symmetric matrix up to the signs of the off-diagonal terms.

Principal Minors: 3×3 symmetric matrices

$$\varphi \colon S^2 \mathbb{C}^2 \to \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$\varphi \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{13} & x_{23} & x_{33} \end{pmatrix} =$$

$$\begin{bmatrix} D_{\emptyset} = 1, \\ D_{\{1\}} = x_{11}, \\ D_{\{2\}} = x_{22}, \\ D_{\{1,2\}} = (x_{11}x_{22} - x_{12}^2), \\ D_{\{3\}} = x_{33}, \\ D_{\{1,3\}} = (x_{11}x_{33} - x_{13}^2), \\ D_{\{2,3\}} = (x_{22}x_{33} - x_{23}^2), \\ D_{\{1,2,3\}} = (x_{11}x_{22}x_{33} - x_{11}x_{23}^2 - x_{22}x_{13}^2 - x_{33}x_{12}^2 + 2x_{12}x_{13}x_{23}) \end{bmatrix}$$

Given $[D_{\emptyset}, D_{\{1\}}, D_{\{2\}}, D_{\{1,2\}}, D_{\{3\}}, D_{\{1,3\}}, D_{\{2,3\}}, D_{\{1,2,3\}}]$ is there a matrix that maps to it? Count parameters: 6 versus 7 - there must be some relation that holds!

3×3 principal minors of symmetric matrices

Theorem (Holtz-Sturmfels 2007, Cayley 1845)

All relations among the principal minors of a 3×3 matrix are generated by Cayley's hyperdeterminant of format $2 \times 2 \times 2$:

$$\begin{split} Det &:= D_{\emptyset}^2 D_{\{1,2,3\}}^2 + D_{\{1\}}^2 D_{\{2,3\}}^2 + D_{\{2\}}^2 D_{\{1,3\}}^2 + D_{\{3\}}^2 D_{\{1,2\}}^2 \\ &\quad + 4 \left(D_{\{1\}} D_{\{2\}} D_{\{3\}} D_{\{1,2,3\}} + D_{\emptyset} D_{\{1,2\}} D_{\{1,3\}} D_{\{2,3\}} \right) \\ - 2 \left(D_{\{1\}} D_{\{2\}} D_{\{1,3\}} D_{\{2,3\}} + D_{\{1\}} D_{\{1,2\}} D_{\{3\}} D_{\{2,3\}} + D_{\{2\}} D_{\{1,2\}} D_{\{3\}} D_{\{1,3\}} \right) \\ &\quad + D_{\emptyset} D_{\{1\}} D_{\{2,3\}} D_{\{1,2,3\}} + D_{\emptyset} D_{\{2\}} D_{\{1,3\}} D_{\{1,2,3\}} + D_{\emptyset} D_{\{1,2\}} D_{\{3\}} D_{\{1,2,3\}} \right) \end{split}$$

In cycle-sums C_I the $2 \times 2 \times 2$ hyperdeterminant is

$$Det = -4C_{\{1,2\}}C_{\{1,3\}}C_{\{2,3\}} + C^2_{\{1,2,3\}},$$

see [Sturmfels-Zwiernik] since in this case cycle-sums correspond to binary cumulants.

Symmetrized principal minors

[Grinshpan, Kaliuzhnyi-Verbovetskyi, Woerdeman] studied the symmetrized principal minor problem in relation to a question on determinantal representations of multivariate polynomials.

For $A \in \mathbb{C}^{n \times n}$, $\Delta_I(A)$ the principal minor of A with row/column sets I. A has symmetrized principal minors if $\Delta_I(A) = \Delta_J(A)$ when |I| = |J|.

Setting $D_S = d_{|S|}$ and $D_{\emptyset} = 1$, the hyperdeterminant symmetries to

$$SDet = -3d_1^2d_2^2 + 4d_1^3d_3 + 4d_2^3 - 6d_1d_2d_3 + d_3^2,$$

the discriminant of the cubic $1 + 3d_1x + 3d_2x^2 + d_3x^3$.

A curious fact: Notice that

$$c_2 = d_1^2 - d_2$$
, and $c_3 = 2d_1^3 - 3d_1d_2 + d_3$,

In cycle sums

$$SDet = -4c_2^3 + c_3^2$$

(the syzygy amongst the covariants of the binary cubic with unit constant term).

General matrices with symmetrized cycle-sums

Proposition

Let $A \in \mathbb{C}^{n \times n}$ be a matrix with the symmetrized cycle-sums property.

- Diagonal Modification: The matrix $A \lambda I_n$ has symmetrized cycle-sums; its diagonal entries are $c_1(A \lambda I_n) = \lambda c_1(A)$; and the k-th symmetrized cycle-sum $c_k(A c_1I_n) = c_k(A)$ for all $k \ge 2$.
- Oiagonal Similarity: For any nonsingular n × n diagonal matrix D, the diagonal conjugation DAD⁻¹ preserves all cycle-sums; so c_k(DAD⁻¹) = c_k(A) for all k ≥ 1.
- **3** Homogeneity: For nonzero $\lambda \in \mathbb{C}$, λA still has symmetrized cycle-sums, and $c_k(\lambda A) = \lambda^k c_k(A)$ for all $k \ge 1$.
- **Permutation Similarity**: For any permutation matrix P, the permutation conjugation PAP^{-1} also has the symmetrized cycle-sums property, and $c_k(PAP^{-1}) = c_k(A)$ for all $k \ge 1$.

Use this symmetry to put the matrix A in the nicest possible format.

Symmetric matrices with symmetrized cycle-sums

Proposition

If A is symmetric, then A is conjugate to

 $\lambda \mathbb{1}_n + \mu I_n, \quad for \ \lambda, \mu \in \mathbb{C},$

where $\mathbb{1}_n$ denotes the $n \times n$ all-ones matrix. We have the following parameterizations:

$$d_k(\lambda \mathbb{1}_n + \mu I_n) = (\mu - \lambda)^{k-1} \cdot (\mu + k \cdot \lambda) ,$$

$$c_k(\lambda \mathbb{1}_n + \mu I_n) = (k-1)! \cdot \lambda^k .$$

The variety of symmetrized principal minors of symmetric matrices is toric.

Theorem (Huang-Oeding)

Let \mathcal{J}_n° denote the ideal $Z_n^{\circ} \cap S^n \mathbb{C}^2 \cap U_{c_0=1}$. If n = 3 then \mathcal{J}_n° is prime, and generated by a single equation,

$$\mathcal{J}_3^\circ = \langle -4c_2^3 + c_3^2 \rangle.$$

For $n \ge 4$ \mathcal{J}_n° has two components in its primary decomposition. One primary component has radical $\langle c_s \mid 2 \le s \le n \rangle$. The other component is prime, and generated by the following $\frac{(n-3)n}{2}$ binomial quadrics:

$$\{(i+j-1)!c_ic_j - (i-1)!(j-1)!c_{i+j} \mid 2 \le i \le j \le n, \quad i+j \le n\}$$
$$\cup \left\{ (k-1)!(l-1)!c_ic_j - (i-1)!(j-1)!c_kc_l \mid \frac{2 \le i,j,k,l \le n, i+j=k+l,}{i < k, i \le j, k \le l} \right\}.$$

Symmetrized principal minors of skew-symmetric matrices

Proposition

If A is skew-symmetric, A is conjugate to

$$\lambda \mathbb{1}_{n}^{\wedge}, \text{ or } \lambda \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & 1 & -1 & 0 \end{pmatrix} \text{ (for } n = 4 \text{ only)}, \text{ for } \lambda \in \mathbb{C}.$$

where $\mathbb{1}_n^{\wedge}$ denotes the $n \times n$ skew-symmetric matrix with 1's above the diagonal. We have the following parameterizations:

$$d_k(\mathbb{1}_n^\wedge) = 1 \quad for \ k \ge 2,$$

 $c_k(\mathbb{1}_n^{\wedge}) = (-1)^{s/2} E_{k-1},$ where E_k is the Euler number.

Note: if A is skew-symmetric and has symmetrized cycle-sums $c_{2k+1} = d_{2k+1} = 0$.

Theorem (Huang-Oeding)

Suppose $n \geq 3$ and let \mathcal{J}_n^{\wedge} denote the ideal of relations among the symmetrized cycle-sums of even sized cycles for a generic skew-symmetric matrix $A \in \bigwedge^2 \mathbb{C}^n$. \mathcal{J}_4^{\wedge} decomposes as the intersection of two prime components

$$\mathcal{J}_4^{\wedge} = \langle -2c_2^2 + c_4 \rangle \quad \cap \quad \langle -6c_2^2 - c_4 \rangle.$$

 \mathcal{J}_5^{\wedge} has primary decomposition with two minimal primes:

$$\langle -2c_2^2 + c_4 \rangle$$
 and $\langle c_2, c_4 \rangle$

When $n \ge 5$ we have either $d_s = 0$ for all s, or $d_{2k} = 1$ and $d_{2k+1} = 0$ for all $k \le n/2$. The cycle-sum relations can be deduced from this.

The proof of the first cases is by direct computation in Macaulay2. The general case is proved by induction using Schur complements.

Theorem (Huang-Oeding)

If A is general, then

- If $n \ge 3$, and $c_1 = c_2 = 0$, then one of the following holds
 - A is conjugate to a strictly upper triangular matrix, where

 $c_1 = c_2 = \cdots = c_n = 0.$

O A is conjugate to an matrix representing an n-cycle and

$$c_1 = c_2 = \dots = c_{n-1} = 0, \qquad c_n \neq 0.$$

- If $c_2 \neq 0$ and $c_1 = c_3 = 0$, then A is conjugate to a skew-symmetric matrix with symmetrized principal minors.
- if $c_1 = 0$, and $c_2 c_3 \neq 0$, then ...

Theorem (Huang-Oeding (Continued))

if c₁ = 0, and c₂c₃ ≠ 0, then A is conjugate to λT_n(x), where T_n(x) is the following Toeplitz matrix for x ∈ C*:

$$T_n(x) := \begin{pmatrix} 0 & 1 & x & x^2 & \cdots & x^{n-2} \\ -1 & 0 & 1 & x & \cdots & x^{n-3} \\ -\frac{1}{x} & -1 & 0 & 1 & \cdots & x^{n-4} \\ -\frac{1}{x^2} & -\frac{1}{x} & -1 & 0 & \cdots & x^{n-5} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{x^{n-2}} & -\frac{1}{x^{n-3}} & -\frac{1}{x^{n-4}} & -\frac{1}{x^{n-5}} & \cdots & 0 \end{pmatrix},$$

where the (i, j) entry of $T_n(x)$ is exactly $\operatorname{sgn}(j-i) \cdot x^{j-i-\operatorname{sgn}(j-i)}$. Moreover $\lambda^2 = -c_2$ and $\lambda^3(x-\frac{1}{x}) = c_3$, and

$$c_s(T_n(x)) = x^{-s} E_{s-1}(-x^2),$$

where $E_n(x)$ is the n-th Eulerian polynomial.

$$d_s(T_n(x)) = \frac{(x^2)^{s-1} + (-1)^s}{x^{s-2}(x^2+1)}, \quad or \quad (x^2+1)d_s(x \cdot T_n(x)) = x^{2s} + (-1)^s x^2.$$

Theorem (Huang-Oeding)

Let $n \geq 3$ and suppose $A \in \mathbb{C}^{n \times n}$ has symmetrized cycle-sums. Let \mathcal{J}_n denote the ideal of relations among the symmetrized cycle-sums of A.

 \mathcal{J}_3 is empty.

 \mathcal{J}_3 is empty. \mathcal{J}_4 decomposes as the intersection of two prime components:

 $\langle 2c_2^3 + c_3^2 - c_2c_4 \rangle$ and $\langle c_3, 6c_2^2 + c_4 \rangle$.

When $n \ge 5$, \mathcal{J}_n has two components: one with radical $\langle c_2, \ldots, c_n \rangle$ (with complicated scheme structure), and the ideal generated by the maximal minors of

$$\begin{pmatrix} d_0 & d_1 & d_2 & \dots & d_{n-2} \\ d_1 & d_2 & d_3 & \dots & d_{n-1} \\ d_2 & d_3 & d_4 & \dots & d_n \end{pmatrix}$$

Computational Experiments

Here are the results of our tests for $S^2 \mathbb{C}^n$.

n	I_1	I_2	$\sqrt{I_2}$	time
3	1 cubic	n/a	n/a	< 0.1 sec.
4	2 quadrics	1 linear, 1 quadric, 2 cubics	$\langle c_2, c_3, c_4 \rangle$	< 0.1 sec.
5	5 quadrics	1 linear, 3 quadrics, 3 cubics	$\langle c_2, c_3, c_4, c_5 \rangle$	< 0.2 sec.
6	9 quadrics	1 linear, 6 quadrics, 4 cubics	$\langle c_2, \ldots, c_6 \rangle$	0.6 sec.
7	14 quadrics	1 linear, 10 quadrics, 5 cubics	$\langle c_2, \ldots, c_7 \rangle$	13 sec.
8	20 quadrics	1 linear, 15 quadrics, 6 cubics	$\langle c_2, \ldots, , c_8 \rangle$	8762 sec.

Computations done on a Server: 24 1.6GHz processors (not all are used at all times in M2) and 141GB of RAM.

Computational Experiments

Here are the results of our tests for $\mathbb{C}^{n \times n}$.

n	I_1	I_2	$\sqrt{I_2}$	time
3	n/a	n/a	n/a	< 0.1 sec.
4	1 cubic	1 linear, 2 quadric	1 linear, 2 quadric	< 1 sec.
5	4 cubics	1 linear, 2 quadrics, 2 cubics, 1 quartic,	$\langle c_2, c_3, c_4, c_5 angle$	5000 sec.
		1 quintic		