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Principal Minor Assignment Problem

Question (Principal Minor Assignment Problem)

Given v ∈ C2n

, does there exist an n× n matrix A such that
v is the vector of all principal minors of A?

There’s a simple test if only we knew generators of the ideal of relations amongst principal minors.
Applications outside of geometry

Spectral graph theory.

Probability theory - covariance of random variables.

Statistical physics - determinantal point processes.

Matrix theory - P -matrices, GKK-τ matrices.

Interesting problem, see [Borodin-Rains], [Kenyon-Pemantle], [Lin-Sturmfels], [Holtz-Sturmfels],
[Rising-Kulesza-Taskar]...
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Principal Minor Coordinates on (C2)⊗n and SnC2

(C2)⊗n = span{DI | I ⊂ [n]}, with an action of GL(2)×n.

Coordinate functions on the variety of principal minors:

Cn×n → (C2)⊗n

A 7→ (DI(A)) = (∆I(A)).

SnC2 = span{ds | 0 ≤ s ≤ n}, with an action of GL(2) ↪→∆ GL(2)×n.

Get SnC2 ↪→ (C2)⊗n by seting ds = DI = DJ whenever |I| = |J | = s.

This process is called symmetrization.
Coordinate functions on the variety of symmetrized principal minors: Assume A is such that
DI(A) = DJ(A) whenever |I| = |J | = s.

Cn×n → SnC2

A 7→ (dk(A)) = (∆[k](A)).

For this whole talk, D∅ = d0 = 1.
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Cycle-sums and principal minors (Following Lin-Sturmfels)

Another set of coordinate functions on (C2)⊗n and SnC2.

Definition

For A ∈ Cn×n and I ⊂ [n] the cycle-sum CI is

CI(A) :=
∑

{i1,...,ik}=I, i1=min I

ai1,i2ai2,i3 · · · aik−1,ikaik,i1 .

Example

The first few cycle-sums are the following.

C∅(A) = 1
C{1}(A) = a1,1

C{1,2}(A) = a1,2a2,1

C{1,2,3}(A) = a1,2a2,3a3,1 + a1,3a3,2a2,1

C{1,2,3,4}(A) = a1,2a2,3a3,4a4,1 + a1,3a3,2a2,4a4,1 + a1,4a4,2a2,3a3,1

+a1,2a2,4a4,3a3,1 + a1,3a3,4a4,2a2,1 + a1,4a4,3a3,2a2,1
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Proposition ([Prop. 4, Lin-Sturmfels])

Fix n ∈ Z+,and rings RC = C [CS | S ⊂ [n]] and RD = C [DS | S ⊂ [n]].
We have a (lower triangular) non-linear isomorphism of rings given by

DS =
∑

S1S2···Sk∈ΠS

(−1)|S|−k CS1CS2 · · ·CSk
, (1)

CS =
∑

S1S2···Sk∈ΠS

(−1)|S|−k(k − 1)! DS1
DS2
· · ·DSk

, (2)

where ΠS is the lattice of set-partitions on S, and D∅ = C∅ = 1.

Lin and Sturmfels’ proof.

The transition RD → RC is Leibnitz’s formula.
RC → RD follows by Möbius inversion on the lattice of set-partitions [Prop. 3.7.1, Stanley].
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Symmetrized cycle-sums and principal minors
Set CI = CJ = cs whenever |I| = |J | = s.
Get another set of coordinate functions on Sn(C2): {ci | 0 ≤ i ≤ n}.

Example

d1 = c1
d2 = c21 − c2
d3 = c31 − 3c1c2 + c3
d4 = c41 − 6c21c2 + 3c22 + 4c1c3 − c4
d5 = c51 − 10c31c2 + 15c1c

2
2 + 10c21c3 − 10c2c3 − 5c1c4 + c5

d6 = c61 − 15c41c2 + 45c21c
2
2 + 20c31c3 − 15c32 − 60c1c2c3 − 15c21c4 + 10c23 + 15c2c4 + 6c1c5 − c6

c1 = d1

c2 = d2
1 − d2

c3 = 2d3
1 − 3d1d2 + d3

c4 = 6d4
1 − 12d2

1d2 + 3d2
2 + 4d1d3 − d4

c5 = 24d5
1 − 60d3

1d2 + 30d1d
2
2 + 20d2

1d3 − 10d2d3 − 5d1d4 + d5

c6 = 120d61−360d41d2+270d21d
2
2+120d31d3−30d32−120d1d2d3−30d21d4+10d23+15d2d4+6d1d5−d6
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Symmetrized cycle-sums and principal minors

Proposition

Symmetrized cycle sums and principal minors transform as

ds =
∑
α`s

(−1)s−|α| pα c
α, (3)

cs =
∑
α`s

(−1)s−|α| (|α| − 1)! pα d
α, (4)

where

pα =
s!

1!m1m1!2!m2m2! · · · s!msms!
.

is the number of set-partitions of [s] with type(α) = (m1, . . . ,ms).

Proof.

We simply combine the symmetrized terms in (1) and (2) to get (3) and (4).
The formula for pα is [Eq. 3.37, Stanley].
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Examples: 2× 2 symmetric matrices

Define a map ϕ : symmetric matrices→ principal minors:

ϕ : S2C2 → C2⊗C2(
a c
c b

)
7→ = [1, a, b, ab− c2]

When can we go backwards? Given [w, x, y, z] is there a 2× 2 matrix that has these principal
minors? Need to solve: (WLOG assume w = 1)

x = a
y = b

z = ab− c2 ⇒ c = ±
√
xy − z

Then

ϕ

(
x ±

√
xy − z

±
√
xy − z y

)
= [1, x, y, z]

Conclude: Even in the n× n case, the 0× 0, 1× 1, and 2× 2 minors determine a symmetric matrix
up to the signs of the off-diagonal terms.
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Principal Minors: 3× 3 symmetric matrices

ϕ : S2C2 → C2⊗C2⊗C2

ϕ

x11 x12 x13

x12 x22 x23

x13 x23 x33

 =



D∅ = 1,
D{1} = x11,
D{2} = x22,
D{1,2} = (x11x22 − x2

12),
D{3} = x33,
D{1,3} = (x11x33 − x2

13),
D{2,3} = (x22x33 − x2

23),
D{1,2,3} =

(
x11x22x33 − x11x

2
23 − x22x

2
13 − x33x

2
12 + 2x12x13x23

)


Given [D∅, D{1}, D{2}, D{1,2}, D{3}, D{1,3}, D{2,3}, D{1,2,3}] is there a matrix that maps to it?
Count parameters: 6 versus 7 - there must be some relation that holds!

L. Oeding (Auburn University) Symmetrization of Principal Minors March 5, 2016 8 / 20



3× 3 principal minors of symmetric matrices

Theorem (Holtz-Sturmfels 2007, Cayley 1845)

All relations among the principal minors of a 3× 3 matrix are generated by Cayley’s
hyperdeterminant of format 2× 2× 2:

Det := D2
∅D

2
{1,2,3} +D2

{1}D
2
{2,3} +D2

{2}D
2
{1,3} +D2

{3}D
2
{1,2}

+4
(
D{1}D{2}D{3}D{1,2,3} +D∅D{1,2}D{1,3}D{2,3}

)
−2

(
D{1}D{2}D{1,3}D{2,3} +D{1}D{1,2}D{3}D{2,3} +D{2}D{1,2}D{3}D{1,3}
+D∅D{1}D{2,3}D{1,2,3} +D∅D{2}D{1,3}D{1,2,3} +D∅D{1,2}D{3}D{1,2,3}

)
.

In cycle-sums CI the 2× 2× 2 hyperdeterminant is

Det = −4C{1,2}C{1,3}C{2,3} + C2
{1,2,3},

see [Sturmfels-Zwiernik] since in this case cycle-sums correspond to binary cumulants.
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Symmetrized principal minors
[Grinshpan, Kaliuzhnyi-Verbovetskyi, Woerdeman] studied the symmetrized principal minor
problem in relation to a question on determinantal representations of multivariate polynomials.

For A ∈ Cn×n, ∆I(A) the principal minor of A with row/column sets I.
A has symmetrized principal minors if ∆I(A) = ∆J(A) when |I| = |J |.

Setting DS = d|S| and D∅ = 1, the hyperdeterminant symmetries to

SDet = −3d2
1d

2
2 + 4d3

1d3 + 4d3
2 − 6d1d2d3 + d2

3,

the discriminant of the cubic 1 + 3d1x+ 3d2x
2 + d3x

3.

A curious fact: Notice that

c2 = d2
1 − d2, and c3 = 2d3

1 − 3d1d2 + d3,

In cycle sums
SDet = −4c32 + c23

(the syzygy amongst the covariants of the binary cubic with unit constant term).
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General matrices with symmetrized cycle-sums

Proposition

Let A ∈ Cn×n be a matrix with the symmetrized cycle-sums property.

1 Diagonal Modification: The matrix A− λIn has symmetrized cycle-sums; its diagonal
entries are c1(A− λIn) = λ− c1(A); and the k-th symmetrized cycle-sum ck(A− c1In) = ck(A)
for all k ≥ 2.

2 Diagonal Similarity: For any nonsingular n× n diagonal matrix D, the diagonal
conjugation DAD−1 preserves all cycle-sums; so ck(DAD−1) = ck(A) for all k ≥ 1.

3 Homogeneity: For nonzero λ ∈ C, λA still has symmetrized cycle-sums, and
ck(λA) = λkck(A) for all k ≥ 1.

4 Permutation Similarity: For any permutation matrix P , the permutation conjugation
PAP−1 also has the symmetrized cycle-sums property, and ck(PAP−1) = ck(A) for all k ≥ 1.

Use this symmetry to put the matrix A in the nicest possible format.
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Symmetric matrices with symmetrized cycle-sums

Proposition

If A is symmetric, then A is conjugate to

λ1n + µIn, for λ, µ ∈ C,

where 1n denotes the n× n all-ones matrix. We have the following parameterizations:

dk(λ1n + µIn) = (µ− λ)k−1 · (µ+ k · λ) ,

ck(λ1n + µIn) = (k − 1)! · λk .
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The variety of symmetrized principal minors of symmetric matrices is toric.

Theorem (Huang-Oeding)

Let J ◦n denote the ideal Z◦n ∩ SnC2 ∩ Uc0=1. If n = 3 then J ◦n is prime, and generated by a single
equation,

J ◦3 = 〈−4c32 + c23〉.

For n ≥ 4 J ◦n has two components in its primary decomposition. One primary component has

radical 〈cs | 2 ≤ s ≤ n〉. The other component is prime, and generated by the following (n−3)n
2

binomial quadrics:

{(i+ j − 1)!cicj − (i− 1)!(j − 1)!ci+j | 2 ≤ i ≤ j ≤ n, i+ j ≤ n}

∪
{

(k − 1)!(l − 1)!cicj − (i− 1)!(j − 1)!ckcl | 2≤i,j,k,l≤n, i+j=k+l,
i<k, i≤j, k≤l

}
.
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Symmetrized principal minors of skew-symmetric matrices

Proposition

If A is skew-symmetric, A is conjugate to

λ1∧n , or λ

(
0 1 1 1
−1 0 1 −1
−1 −1 0 1
−1 1 −1 0

)
(for n = 4 only), for λ ∈ C,

where 1∧n denotes the n× n skew-symmetric matrix with 1’s above the diagonal. We have the
following parameterizations:

dk(1∧n) = 1 for k ≥ 2,

ck(1∧n) = (−1)s/2Ek−1, where Ek is the Euler number.
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Note: if A is skew-symmetric and has symmetrized cycle-sums c2k+1 = d2k+1 = 0.

Theorem (Huang-Oeding)

Suppose n ≥ 3 and let J ∧n denote the ideal of relations among the symmetrized cycle-sums of even

sized cycles for a generic skew-symmetric matrix A ∈
∧2Cn. J ∧4 decomposes as the intersection of

two prime components
J ∧4 = 〈−2c22 + c4〉 ∩ 〈−6c22 − c4〉.

J ∧5 has primary decomposition with two minimal primes:

〈−2c22 + c4〉 and 〈c2, c4〉

When n ≥ 5 we have either ds = 0 for all s, or d2k = 1 and d2k+1 = 0 for all k ≤ n/2. The
cycle-sum relations can be deduced from this.

The proof of the first cases is by direct computation in Macaulay2. The general case is proved by
induction using Schur complements.
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Theorem (Huang-Oeding)

If A is general, then

If n ≥ 3, and c1 = c2 = 0, then one of the following holds
1 A is conjugate to a strictly upper triangular matrix, where

c1 = c2 = · · · = cn = 0.

2 A is conjugate to an matrix representing an n-cycle and

c1 = c2 = · · · = cn−1 = 0, cn 6= 0.

If c2 6= 0 and c1 = c3 = 0, then A is conjugate to a skew-symmetric matrix with symmetrized
principal minors.

if c1 = 0, and c2c3 6= 0, then . . .
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Theorem (Huang-Oeding (Continued))

if c1 = 0, and c2c3 6= 0, then A is conjugate to λTn(x), where Tn(x) is the following Toeplitz
matrix for x ∈ C∗:

Tn(x) :=



0 1 x x2 · · · xn−2

−1 0 1 x · · · xn−3

− 1
x −1 0 1 · · · xn−4

− 1
x2 − 1

x −1 0 · · · xn−5

...
...

...
...

. . .
...

− 1
xn−2 − 1

xn−3 − 1
xn−4 − 1

xn−5 · · · 0


,

where the (i, j) entry of Tn(x) is exactly sgn(j − i) · xj−i−sgn(j−i). Moreover λ2 = −c2 and
λ3(x− 1

x ) = c3, and

cs(Tn(x)) = x−sEs−1(−x2),

where En(x) is the n-th Eulerian polynomial.

ds(Tn(x)) =
(x2)s−1 + (−1)s

xs−2(x2 + 1)
, or (x2 + 1)ds(x · Tn(x)) = x2s + (−1)sx2.
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Theorem (Huang-Oeding)

Let n ≥ 3 and suppose A ∈ Cn×n has symmetrized cycle-sums. Let Jn denote the ideal of relations
among the symmetrized cycle-sums of A.
J3 is empty.
J3 is empty. J4 decomposes as the intersection of two prime components:

〈2c32 + c23 − c2c4〉 and 〈c3, 6c22 + c4〉.

When n ≥ 5, Jn has two components: one with radical 〈c2, . . . , cn〉 (with complicated scheme
structure), and the ideal generated by the maximal minors ofd0 d1 d2 . . . dn−2

d1 d2 d3 . . . dn−1

d2 d3 d4 . . . dn

 .
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Computational Experiments

Here are the results of our tests for S2Cn.

n I1 I2
√
I2 time

3 1 cubic n/a n/a < 0.1 sec.

4 2 quadrics 1 linear, 1 quadric, 2 cubics 〈c2, c3, c4〉 < 0.1 sec.

5 5 quadrics 1 linear, 3 quadrics, 3 cubics 〈c2, c3, c4, c5〉 < 0.2 sec.

6 9 quadrics 1 linear, 6 quadrics, 4 cubics 〈c2, . . . , c6〉 0.6 sec.

7 14 quadrics 1 linear, 10 quadrics, 5 cubics 〈c2, . . . , c7〉 13 sec.

8 20 quadrics 1 linear, 15 quadrics, 6 cubics 〈c2, . . . , , c8〉 8762 sec.

Computations done on a Server: 24 1.6GHz processors (not all are used at all times in M2) and
141GB of RAM.
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Computational Experiments

Here are the results of our tests for Cn×n.

n I1 I2
√
I2 time

3 n/a n/a n/a < 0.1 sec.

4 1 cubic 1 linear, 2 quadric 1 linear, 2 quadric < 1 sec.

5 4 cubics
1 linear, 2 quadrics,
2 cubics, 1 quartic,

1 quintic
〈c2, c3, c4, c5〉 5000 sec.
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