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An example: Spectral graph theory

Let I" be a graph with
e vertex set Qo = {v1,...,v,}
o edge set Q1 = {e;; | viv; € I'}.
The graph Laplacian of an undirected graph is a (symmetric) matrix
—1 if i £ j and €55 € Q1

A(F)@j = 0 ifi 74] and ei,j ¢ Ql
deg(v;) ifi=j

The principal minors of A(I") are invariants of the graph, in fact:

Theorem (Kirchoff’s Matrix-Tree theorem (~1850’s))

Any (n — 1) x (n — 1) principal minor of A(I') counts the number of
spanning trees of I'.
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An example: Spectral graph theory

There are many generalizations of the Matrix-Tree Theorem, such as
Theorem (Matrix-Forest Theorem)

Let A(T')2 be the principal minor of A(T) indexed by S. Then A(T)2 =
number of spanning forests of I rooted at vertices indexed by S.

The A(F)g are graph invariants. The relations among principal minors
are then also relations among these graph invariants.

Question

When does there exist a graph T with invariants [v] € P*"~1 specified by
the principal minors of a symmetric matriz A(T") ?
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Further Questions

e Holtz and Schneider, D. Wagner, ... : When is it possible to
prescribe the principal minors of a symmetric matrix?

e Equivalently, when can you prescribe all the eigenvalues of a
symmetric matrix and all of its principal submatrices?

o Algebraic reformulation: What is the defining ideal of the
algebraic variety of principal minors of symmetric matrices?

e For n > 3 this is an overdetermined problem : (";1) versus 2".
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Examples: 2 x 2 case

Define a (homogeneous) map:
© : symmetric matrices — principal minors:

a C 2 - 2
<p<<c b>,t)—[t,ta,tb,ab ]

When can we go backwards? Given [w, z,v, 2] is there a 2 X 2 matrix
that has these principal minors? Need to solve: (WLOG assume
t=w=1)
r=a
y=>=
z=ab—c* = c=+ay—2

x +ry — 2

1]=0
@(( i\/wj y >7 > [7xay7z]

Conclude: Even in the n x n case, the 0 x 0, 1 x 1, and 2 x 2 minors

determine a symmetric matrix up to the signs of the off-diagonal terms.
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Principal Minors: 3 x 3 symmetric matrices

11 T12 T13 t3
% 12 ®22 Tz |t t2z11
13 T23 T33 29
_ t(xnian — x1y)
- t2x33

t(z11233 — 213)

t(w22233 — 733)

(331111322$33 + 2212213%23 — T11235
Given [Xooo, X100, X010, X110, X001, X101, X011, X111] is there a matrix
that maps to it?
Count parameters: 7 versus 8 - there must be some relation that holds!
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First result

Theorem (Holtz-Sturmfels '07)

All relations among the principal minors of a 3 X 3 matriz are
generated by . .. this beautiful degree 4 homogeneous polynomial:

(Xo000)?(X111)? + (X100)%(Xo011)? + (X010)*(X101)? + (X110)*(Xo001)*

+ 4 X000 X110X101 X011 + 4X100X010X001 X111
— 2X000X100X011 X111 — 2X100 X010 X011 X101
— 2X000X010X101 X111 — 2X100 X001 X110 X011
— 2X000X001X110X111 — 2X001 X010 X101 X110

— Cayley’s hyperdeterminant of format 2 x 2 x 2.
It is invariant under the action of Gz x SL(2) x SL(2) x SL(2)!
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The Variety of Principal Minors of Symmetric Matrices

@ The variety of principal minors of n X n symmetric matrices, Z,, is
defined by the principal minor map

¢ :P(S?’C" @ C) --»P(C*®---®C% =PC*"

)

[A, t] —> [tn, tn_lAlomo(A)
t

tn_IAmo...o(A), 75'”_2A110...0(A)
"1 Agoto...0(A), )

"2 A1010..0(A), "2 Ao110..0(A
oA 1(A)]

)

where A7(A) is the principal minor of A with rows indicated by I.

e Q: Given a vector v of length 2™, how can you tell whether or not
it arose in this way?

o A: Test whether v satisfies all the relations in Z(Z,).
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Hidden Symmetry

Zp, is invariant under the action of G = &, x SL(2)*".

Theorem (Landsberg, Holtz-Sturmfels) J

o Fact: A variety X C PV is a G-variety < the ideal Z(X) is a
G-module.

o Z, is a subvariety of P(V; ® --- ® V},), where each V; ~ C2.

o KEY POINT: We must study Z(Z,) C Sym(V;*® ---®@ V;}) as a
G-module!

e Mantra: “Each irreducible module is either in or out!”

Luke Oeding Principal Minors and Geometry September 10, 2013 8/1



Slight Detour: A Geometric Proof of Symmetry

e For non-degenerate w € /\2C”, the Lagrangian Grassmannian is
Gr,(n,2n) ={F € Gr(n,2n) | w(v,w) = 0 Vo,w € E}.
e Gry(n,2n) is a homogeneous variety for Sp(2n).
e Gry(n,2n) is the image of the rational map:
(U IP’(SQ(Cn ®C) --» PI,, ~ ]P(Q:)_(ﬂz)_l

{symmetric matriz} +— {vector of all nonredundant minors}

e The connection: Z, is a linear projection of Gr,(n,2n).

e Can use this projection to find symmetries of Z,, as a subgroup of
Sp(2n).

e Try to find projections of homogeneous varieties to study other
G-varieties (later in the talk).
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Multilinear Algebra

° Sd(Vl* ® ---® V) = homogeneous degree d polynomials on 2"
variables. It is a module for G = SL(V}) x --- x SL(V,,).

o If we choose a basis {z?,z}} of V;* ~ C? for each i, then

Vi* ® -+ ® V¥ has the induced basis z{' ® --- @ zf =: XJ.
@ Then G acts on V" ® --- ® V¥ by change of basis in each factor: If
g=1(91,---,9n) € G, then

9-X1r = (91.27") @+ @ (gn-27"),
and acts on SY(Vj* ® -+ ® V;¥) by the induced action:

g.(X[XJ .. XK) = (g.X[)(g.XJ) c. (g.XK)

o We have defined the action on a basis of each module, so we can
just extend by linearity to get the action on the whole module.
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Representation Theory

Want to study Zy4(Z,) C S¢(ViF @ -+ @ V).
e Each irreducible &,, x SL(2)*"-module in S¢(Vi* ® --- ® V;¥) is
isomorphic to one indexed by partitions 7; of d of the form :

Sy Sy - Sy = D Sy, Vi @ Sy Vo @+ @ S Vi
0'6677,

@ Can use the combinatorial information 71, ..., T, to construct the
module.

e If M is an irreducible G-module, then M = {G.v}, some vector v -
use this as often as possible.

e This gives a finite list of vectors to test for ideal membership!

e Also gives a way to produce many polynomials in Z(Z,,) from one
polynomial.
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An Example

The module S 9)V C V®4 is one dimensional, and every vector is a
scalar multiple of

h = 2Xo011 — X1001 — X1010 — Xo0101 — Xo110 + 2X1100

To find a polynomial in S 2)V1 ® S(z2)V2 ® S(2,2)V3, we need to
compute h ® h ® h in V1®4 ® V2®4 ® V3®4, but we want a polynomial in
S4(Vi ® Vo ® V3), so we just permute

VARV VP - (Vi@ Va @ V3)®4
and symmetrize

(V1@ Va® V3)® = 84V @ Vo ® V)
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An Example

Finally, we get the result

(Xo000)?(X111)? + (X100)*(Xo011)? + (X010)*(X101)* 4 (X110)*(Xo001)?
+ 4 X000X110X101 X011 + 4X100X010X001 X111
— 2X000X100X011 X111 — 2X100 X010 X011 X101
— 2X000X010X101 X111 — 2X100 X001 X110 X011
— 2X000X001X110X111 — 2X001 X010 X101 X110

In fact, this is Cayley’s hyperdeterminant of format 2 x 2 x 2 !
It’s an irreducible degree 4 polynomial on 8 variables.

It is invariant under the action of &3 x SL(2) x SL(2) x SL(2).
It generates the module S5 2)5(2,2)5(2,2)-

It is the single equation defining the hypersurface Zs.
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Rephrasing of Previous Results

Theorem (Holtz-Sturmfels)

I(Z3) is generated in degree 4 by S(22)S(2.2)52,2) (Cayley’s
Hyperdeterminant of format 2 x 2 x 2).

Theorem (H-S)

I(Z4) is generated in degree 4 by S(4)S(2,2)S(2,2)S(2,2) (A
hyperdeterminantal module).

v

Remark: S5(4)5(2,2)5(2,2)5(2,2) 1s the span of the G-orbit of the 2 x 2 x 2
hyperdeterminant on the variables X,.0.

Conjecture (H-S)

I(Zy) is generated in degree 4 by Sy - .. S4)S2,.2)52,2)S2,2) (the
hyperdeterminantal module).
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A Limit of the Computer’s Usefulness

e For n = 3: A single irreducible degree 4 polynomial on 8 variables
cuts out the irreducible hypersurface in P7.

e For n = 4: 20 degree 4 polynomials on 16 variables.
Macaulay2 = the ideal is prime and has the correct dimension.
But Z4 is an irreducible variety + commutative algebra = .

o For n = 5: 250 degree 4 polynomials on 32 variables.
Sadly, the computer melted.

e For n = 6: 2500 degree 4 polynomials on 64 variables. @

e For n=n: (S”) 573 degree 4 polynomials on 2" variables. @ @
What can we say in general without the computer?

Luke Oeding Principal Minors and Geometry September 10, 2013 15 /1



New Results

Theorem (-)

Let HD = {Gn X SL(Q)Xn.hypmg} = 5(4) cee 5(4)5(2’2)5(2’2)5(2’2). The
variety Zy is cut out set-theoretically by the hyperdeterminantal module.

V(HD) = Z,.

e To prove that Z, C V(HD), show that hyp (a highest weight
vector for the irreducible module H D) vanishes on every point of
Zy,. This follows from the 3 x 3 case.

e To prove that Z, D V(HD), need a geometric understanding of
zero-sets of modules with similar properties to HD.
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Outline of proof of main theorem

e Want to show V(HD) C Z, - do induction on n. For z € V(HD),
attempt to construct a matrix A € S?C" so that A~ z € V(HD).

o Have already seen: the 0 x 0, 1 x 1 and 2 x 2 principal minors of a
symmetric matrix determine the matrix up to the signs of the
off-diagonal terms.

o For n > 4 can show that if two symmetric matrices have the same
0 x 0 ...3 x 3 principal minors, then 4 x 4 principal minors agree

also. Then iterate.

e We show that points in V(H D) have essentially the same property:
i.e. if z,w € V(HD) and zy = wy for all I # [1,...,1] then z = w.

e Main Tool: a geometric characterization of augmented modules.
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Characterizing the zero set of V(H D) via augmentation

o Notice that for case n, HD = S(y) ... S(4) 5(2,2)5(2,2)5(2,2) and for
—_———

n—3

casen+1, HD = 5(4) . 5(4) 8(272)5(272)3(272) is still degree 4.
—_———

n—2
e What can we say about zero set of an augmented ideal
V(Z4(X) ® SV*) based on V(Zy(X))?

Lemma (inspired by Landsberg-Manivel lemma on prolongation)

Let X C PW and let X = V(Zy(X)) (notation,).

V(Zy(X) @ SV = | PL V),
LcX

where L C X are linear subspaces.
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What does this buy us?

Consequence
Assume that HD = @, HD; ® S*V; C SY (V1 @ --- @ V,,) and V; ~ C?,
then
V(HD) =N, U Ppzew
LCV(HD;)

e Suppose z € V(HD) = V(€P,; HD; ® S*V;), and assume for
induction that V(HD;) ~ Z,,_1.

@ Then our geometric realization gives n different expressions for z,
2= p([AY, 1)) @ o + o([BY, sV)) @ 2},

where A, B € §2C"~ ! and {29, z}} = V;.
e We can use this information (4 technical details) to build an n x n

matrix A so that ¢([A,t]) = z, and this proves the theorem.
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The tangential variety to the Segre product

o The Segre Variety, i.e the variety of rank one tensors is
Seg(PVi x -+ xPV,)={n1 @ - Quy] |v; EV;} CP(V1®---®@V,).

o If X C P is a smooth variety, define the tangential variety
7(X) CP(V) by )
T(X) = U:DGXTCEX

o 7(Seg(PVix---xPV,)) ={D L, v1i® - Qu.®---@uy] | v;,v] € V;}.

o 7(Seg(P! x -+ x P1)) is a (SL(2)*") x &,-variety.

dim = 2n << (";1) = too small to be equal to Z,, for n > 4.

o 7(Seg(Pt x - x PY)) C Z, for n > 3, with equality for n = 3.
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Exclusive rank
The standard notion of rank is destroyed by the SL(2)*™ action.

For a matrix A, the minor A% (A) is said to be exclusive if I N J =0,
i.e. the minor has no coincidental row and column indices.

The matrix A has exclusive-rank (E-rank) < k if all of its k+ 1 x k41
exclusive minors vanish. (Laplace expansion implies uniqueness.)
Proposition

The variety of principal minors of symmetric matrices with E-rank < k
is (SL(2)*™) x &, -invariant.

Idea of proof: Can use the projection of the Lagrangian Grassmannian
just like the case of Z,,. Find that each exclusive minor is fixed by the
action of SL(2)*" when viewed as a subgroup of SP(2n) acting on the
space of all minors. This symmetry “survives” the projection to Z,.
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Principal minors of low E-rank matrices

Proposition

The image of the matrices with E-rank-0 under ¢ is
Seg(P! x --- x P1).

The image of the symmetric matrices with E-rank <1 under ¢ s

7(Seg(P! x --- x PY)).

Rough idea of proof: It is easy to show that a vector of principal
minors of an E-rank-1 matrix is a point on the tangential variety.

To go the other way, we show that every point on the tangential
variety is in the SL(2)*™-orbit of the set of principal minors of rank-1
symmetric matrices (usual rank).

The set of principal minors of E-rank < 1 symmetric matrices is an
irreducible SL(2)*™-invariant variety of the same dimension = [J.
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The Landsberg-Weyman Conjecture

Let V; be complex vector spaces and let V;* be their dual spaces.
Conjecture (Conjecture 7.6. Landsberg-Weyman)

I(1 (Seg (PV}* x --- x PV.¥))) is generated by the quadrics in

S2(Vi @ --- ® V) which have at least four N* factors, the cubics with
four Sz 1 factors and all other factors Sz, and the quartics with three
S2.2’s and all other factors Syp.

Theorem (-)

7 (Seg (PV)* x -+ x PV,¥)) is cut out set-theoretically by the cubics in
S3(Vi®---® V) with four Sa1 factors and all other factors Ssg, and
the quartics in S*(V1 ® --- ® V,,) with three Sa.2’s and all other factors
S4,0-
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Proof of the Landsberg-Weyman Conjecture

o A standard argument: Because all of the modules of polynomials
occurring have partitions with no more than 2 parts, it suffices to
prove the case with all P's.

o The degree four equations are actually the hyperdeterminantal
module HD! So by using the result V(H D) = Z,, we can proceed
by showing that 7(Seg(P! x --- x P1)) is precisely the subvariety
of Z, cut out by the cubics in the ideal: S3152152,152,153...953.

e We directly computed the cubics and pulled them back to the
space of symmetric matrices via the principal minor map.

@ The result was the set of 2 x 2 exclusive minors! But we just
showed that the image of the E-rank-1 symmetric matrices under
the principal minor map is the tangential variety.
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Thanks!
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