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An example: Spectral graph theory

Let Γ be a graph with

vertex set Q0 = {v1, . . . , vn}
edge set Q1 = {ei,j | vivj ∈ Γ}.

The graph Laplacian of an undirected graph is a (symmetric) matrix

∆(Γ)i,j =


−1 if i 6= j and ei,j ∈ Q1

0 if i 6= j and ei,j /∈ Q1

deg(vi) if i = j

The principal minors of ∆(Γ) are invariants of the graph, in fact:

Theorem (Kirchoff’s Matrix-Tree theorem (∼1850’s))

Any (n− 1)× (n− 1) principal minor of ∆(Γ) counts the number of
spanning trees of Γ.
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An example: Spectral graph theory

There are many generalizations of the Matrix-Tree Theorem, such as

Theorem (Matrix-Forest Theorem)

Let ∆(Γ)SS be the principal minor of ∆(Γ) indexed by S. Then ∆(Γ)SS =
number of spanning forests of Γ rooted at vertices indexed by S.

The ∆(Γ)SS are graph invariants. The relations among principal minors
are then also relations among these graph invariants.

Question

When does there exist a graph Γ with invariants [v] ∈ P2n−1 specified by
the principal minors of a symmetric matrix ∆(Γ)?
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Further Questions

Holtz and Schneider, D. Wagner, ... : When is it possible to
prescribe the principal minors of a symmetric matrix?

Equivalently, when can you prescribe all the eigenvalues of a
symmetric matrix and all of its principal submatrices?

Algebraic reformulation: What is the defining ideal of the
algebraic variety of principal minors of symmetric matrices?

For n ≥ 3 this is an overdetermined problem :
(
n+1
2

)
versus 2n.
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Examples: 2× 2 case

Define a (homogeneous) map:
ϕ : symmetric matrices→ principal minors:

ϕ

((
a c
c b

)
, t

)
= [t2, ta, tb, ab− c2]

When can we go backwards? Given [w, x, y, z] is there a 2× 2 matrix
that has these principal minors? Need to solve: (WLOG assume
t = w = 1)

x = a
y = b

z = ab− c2 ⇒ c = ±
√
xy − z

ϕ

((
x ±

√
xy − z

±
√
xy − z y

)
, 1

)
= [1, x, y, z]

Conclude: Even in the n× n case, the 0× 0, 1× 1, and 2× 2 minors
determine a symmetric matrix up to the signs of the off-diagonal terms.
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Principal Minors: 3× 3 symmetric matrices

ϕ

 x11 x12 x13
x12 x22 x23
x13 x23 x33

 , t


=

t3

t2x11
t2x22
t(x11x22 − x212)
t2x33
t(x11x33 − x213)
t(x22x33 − x223)(
x11x22x33 + 2x12x13x23 − x11x223 − x22x213 − x33x212

)
Given [X000, X100, X010, X110, X001, X101, X011, X111] is there a matrix
that maps to it?
Count parameters: 7 versus 8 - there must be some relation that holds!
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First result

Theorem (Holtz-Sturmfels ’07)

All relations among the principal minors of a 3× 3 matrix are
generated by . . . this beautiful degree 4 homogeneous polynomial:

(X000)
2(X111)

2 + (X100)
2(X011)

2 + (X010)
2(X101)

2 + (X110)
2(X001)

2

+ 4X000X110X101X011 + 4X100X010X001X111

− 2X000X100X011X111 − 2X100X010X011X101

− 2X000X010X101X111 − 2X100X001X110X011

− 2X000X001X110X111 − 2X001X010X101X110

– Cayley’s hyperdeterminant of format 2× 2× 2.
It is invariant under the action of S3 n SL(2)× SL(2)× SL(2)!
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The Variety of Principal Minors of Symmetric Matrices

The variety of principal minors of n× n symmetric matrices, Zn, is
defined by the principal minor map

ϕ : P(S2Cn ⊕ C) 99K P(C2 ⊗ · · · ⊗ C2) = PC2n

[A, t] 7→ [tn, tn−1∆10...0(A), tn−1∆010...0(A), tn−2∆110...0(A),

tn−1∆0010...0(A), tn−2∆1010...0(A), tn−2∆0110...0(A),

. . . . . . ,∆1...1(A)]

where ∆I(A) is the principal minor of A with rows indicated by I.

Q: Given a vector v of length 2n, how can you tell whether or not
it arose in this way?

A: Test whether v satisfies all the relations in I(Zn).
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Hidden Symmetry

Theorem (Landsberg, Holtz-Sturmfels)

Zn is invariant under the action of G = SnnSL(2)×n.

Fact: A variety X ⊂ PN is a G-variety ⇔ the ideal I(X) is a
G-module.

Zn is a subvariety of P(V1 ⊗ · · · ⊗ Vn), where each Vi ' C2.

KEY POINT: We must study I(Zn) ⊂ Sym(V ∗1 ⊗ · · · ⊗ V ∗n ) as a
G-module!

Mantra: “Each irreducible module is either in or out!”
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Slight Detour: A Geometric Proof of Symmetry

For non-degenerate ω ∈
∧2Cn, the Lagrangian Grassmannian is

Grω(n, 2n) = {E ∈ Gr(n, 2n) | ω(v, w) = 0 ∀v, w ∈ E}.
Grω(n, 2n) is a homogeneous variety for Sp(2n).

Grω(n, 2n) is the image of the rational map:

ψ : P(S2Cn ⊕ C) 99K PΓn ' P(2nn )−( 2n
n−2)−1

{symmetric matrix} 7→ {vector of all nonredundant minors}

The connection: Zn is a linear projection of Grω(n, 2n).

Can use this projection to find symmetries of Zn as a subgroup of
Sp(2n).

Try to find projections of homogeneous varieties to study other
G-varieties (later in the talk).
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Multilinear Algebra

Sd(V ∗1 ⊗ · · · ⊗ V ∗n ) = homogeneous degree d polynomials on 2n

variables. It is a module for G = SL(V1)× · · · × SL(Vn).

If we choose a basis {x0i , x1i } of V ∗i ' C2 for each i, then
V ∗1 ⊗ · · · ⊗ V ∗n has the induced basis xε11 ⊗ · · · ⊗ xεnn =: XI .

Then G acts on V ∗1 ⊗ · · · ⊗ V ∗n by change of basis in each factor: If
g = (g1, . . . , gn) ∈ G, then

g.XI = (g1.x
ε1
1 )⊗ · · · ⊗ (gn.x

εn
n ),

and acts on Sd(V ∗1 ⊗ · · · ⊗ V ∗n ) by the induced action:

g.(XIXJ . . . XK) = (g.XI)(g.XJ) . . . (g.XK)

We have defined the action on a basis of each module, so we can
just extend by linearity to get the action on the whole module.
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Representation Theory

Want to study Id(Zn) ⊂ Sd(V ∗1 ⊗ · · · ⊗ V ∗n ).

Each irreducible Sn n SL(2)×n-module in Sd(V ∗1 ⊗ · · · ⊗ V ∗n ) is
isomorphic to one indexed by partitions πi of d of the form :

Sπ1Sπ2 . . . Sπn :=
⊕
σ∈Sn

Sπσ(1)V
∗
1 ⊗ Sπσ(2)V

∗
2 ⊗ · · · ⊗ Sπσ(n)V

∗
n

Can use the combinatorial information π1, . . . , πn to construct the
module.

If M is an irreducible G-module, then M = {G.v}, some vector v -
use this as often as possible.

This gives a finite list of vectors to test for ideal membership!

Also gives a way to produce many polynomials in I(Zn) from one
polynomial.
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An Example

The module S(2,2)V ⊂ V ⊗4 is one dimensional, and every vector is a
scalar multiple of

h = 2X0011 −X1001 −X1010 −X0101 −X0110 + 2X1100

To find a polynomial in S(2,2)V1 ⊗ S(2,2)V2 ⊗ S(2,2)V3, we need to

compute h⊗ h⊗ h in V ⊗41 ⊗ V ⊗42 ⊗ V ⊗43 , but we want a polynomial in
S4(V1 ⊗ V2 ⊗ V3), so we just permute

V ⊗41 ⊗ V ⊗42 ⊗ V ⊗43 → (V1 ⊗ V2 ⊗ V3)⊗4

and symmetrize

(V1 ⊗ V2 ⊗ V3)⊗4 → S4(V1 ⊗ V2 ⊗ V3)
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An Example

Finally, we get the result

(X000)
2(X111)

2 + (X100)
2(X011)

2 + (X010)
2(X101)

2 + (X110)
2(X001)

2

+ 4X000X110X101X011 + 4X100X010X001X111

− 2X000X100X011X111 − 2X100X010X011X101

− 2X000X010X101X111 − 2X100X001X110X011

− 2X000X001X110X111 − 2X001X010X101X110

In fact, this is Cayley’s hyperdeterminant of format 2× 2× 2 !
It’s an irreducible degree 4 polynomial on 8 variables.
It is invariant under the action of S3 n SL(2)× SL(2)× SL(2).
It generates the module S(2,2)S(2,2)S(2,2).
It is the single equation defining the hypersurface Z3.
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Rephrasing of Previous Results

Theorem (Holtz-Sturmfels)

I(Z3) is generated in degree 4 by S(2,2)S(2,2)S(2,2) (Cayley’s
Hyperdeterminant of format 2× 2× 2).

Theorem (H-S)

I(Z4) is generated in degree 4 by S(4)S(2,2)S(2,2)S(2,2) (A
hyperdeterminantal module).

Remark: S(4)S(2,2)S(2,2)S(2,2) is the span of the G-orbit of the 2× 2× 2
hyperdeterminant on the variables X∗∗∗0.

Conjecture (H-S)

I(Zn) is generated in degree 4 by S(4) . . . S(4)S(2,2)S(2,2)S(2,2) (the
hyperdeterminantal module).
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A Limit of the Computer’s Usefulness

For n = 3: A single irreducible degree 4 polynomial on 8 variables
cuts out the irreducible hypersurface in P7.

For n = 4: 20 degree 4 polynomials on 16 variables.
Macaulay2 ⇒ the ideal is prime and has the correct dimension.
But Z4 is an irreducible variety + commutative algebra ⇒ �.

For n = 5: 250 degree 4 polynomials on 32 variables.
Sadly, the computer melted.

For n = 6: 2500 degree 4 polynomials on 64 variables. /

For n = n:
(
n
3

)
5n−3 degree 4 polynomials on 2n variables. //

What can we say in general without the computer?
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New Results

Theorem (-)

Let HD := {Sn n SL(2)×n.hyp123} = S(4) . . . S(4)S(2,2)S(2,2)S(2,2). The
variety Zn is cut out set-theoretically by the hyperdeterminantal module.

V(HD) = Zn.

To prove that Zn ⊂ V(HD), show that hyp (a highest weight
vector for the irreducible module HD) vanishes on every point of
Zn. This follows from the 3× 3 case.

To prove that Zn ⊃ V(HD), need a geometric understanding of
zero-sets of modules with similar properties to HD.
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Outline of proof of main theorem

Want to show V(HD) ⊂ Zn - do induction on n. For z ∈ V(HD),
attempt to construct a matrix A ∈ S2Cn so that A 7→ z ∈ V(HD).

Have already seen: the 0× 0, 1× 1 and 2× 2 principal minors of a
symmetric matrix determine the matrix up to the signs of the
off-diagonal terms.

For n ≥ 4 can show that if two symmetric matrices have the same
0× 0 . . . 3× 3 principal minors, then 4× 4 principal minors agree
also. Then iterate.

We show that points in V(HD) have essentially the same property:
i.e. if z, w ∈ V(HD) and zI = wI for all I 6= [1, . . . , 1] then z = w.

Main Tool: a geometric characterization of augmented modules.
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Characterizing the zero set of V(HD) via augmentation

Notice that for case n, HD = S(4) . . . S(4)︸ ︷︷ ︸
n−3

S(2,2)S(2,2)S(2,2) and for

case n+ 1, HD = S(4) . . . S(4)︸ ︷︷ ︸
n−2

S(2,2)S(2,2)S(2,2) is still degree 4.

What can we say about zero set of an augmented ideal
V(Id(X)⊗ SdV ∗) based on V(Id(X))?

Lemma (inspired by Landsberg-Manivel lemma on prolongation)

Let X ⊂ PW and let X̃ = V(Id(X)) (notation).

V(Id(X)⊗ SdV ∗) =
⋃
L⊂X̃

P(L⊗ V ),

where L ⊂ X̃ are linear subspaces.
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What does this buy us?

Consequence

Assume that HD =
⊕

iHDî ⊗ S
4Vi ⊂ S4(V1 ⊗ · · · ⊗ Vn) and Vi ' C2,

then

V(HD) = ∩ni=1

 ⋃
L⊂V (HDî)

P(L⊗ Vi)

 .

Suppose z ∈ V(HD) = V(
⊕

iHDî ⊗ S
4Vi), and assume for

induction that V(HDî) ' Zn−1.
Then our geometric realization gives n different expressions for z,

z = ϕ([A(i), t(i)])⊗ x0i + ϕ([B(i), s(i)])⊗ x1i ,

where A(i), B(i) ∈ S2Cn−1 and {x0i , x1i } = Vi.

We can use this information (+ technical details) to build an n× n
matrix A so that ϕ([A, t]) = z, and this proves the theorem.
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The tangential variety to the Segre product

The Segre Variety, i.e the variety of rank one tensors is
Seg(PV1× · · ·×PVn) = {v1⊗ · · ·⊗ vn] | vi ∈ Vi} ⊂ P(V1⊗ · · ·⊗Vn).

If X ⊂ PN is a smooth variety, define the tangential variety
τ(X) ⊂ P(V ) by

τ(X) := ∪x∈X T̃xX

τ(Seg(PV1×· · ·×PVn)) = {[
∑n

i=1 v1⊗· · ·⊗v′i⊗· · ·⊗vn] | vi, v′i ∈ Vi}.

τ(Seg(P1 × · · · × P1)) is a (SL(2)×n) nSn-variety.
dim = 2n <<

(
n+1
2

)
⇒ too small to be equal to Zn for n ≥ 4.

τ(Seg(P1 × · · · × P1)) ⊂ Zn for n ≥ 3, with equality for n = 3.
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Exclusive rank

The standard notion of rank is destroyed by the SL(2)×n action.

For a matrix A, the minor ∆I
J(A) is said to be exclusive if I ∩ J = ∅,

i.e. the minor has no coincidental row and column indices.

The matrix A has exclusive-rank (E-rank) ≤ k if all of its k + 1× k + 1
exclusive minors vanish. (Laplace expansion implies uniqueness.)

Proposition

The variety of principal minors of symmetric matrices with E-rank ≤ k
is (SL(2)×n) nSn-invariant.

Idea of proof: Can use the projection of the Lagrangian Grassmannian
just like the case of Zn. Find that each exclusive minor is fixed by the
action of SL(2)×n when viewed as a subgroup of SP (2n) acting on the
space of all minors. This symmetry “survives” the projection to Zn.
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Principal minors of low E-rank matrices

Proposition

The image of the matrices with E-rank-0 under ϕ is

Seg(P1 × · · · × P1).

The image of the symmetric matrices with E-rank ≤ 1 under ϕ is

τ(Seg(P1 × · · · × P1)).

Rough idea of proof: It is easy to show that a vector of principal
minors of an E-rank-1 matrix is a point on the tangential variety.
To go the other way, we show that every point on the tangential
variety is in the SL(2)×n-orbit of the set of principal minors of rank-1
symmetric matrices (usual rank).
The set of principal minors of E-rank ≤ 1 symmetric matrices is an
irreducible SL(2)×n-invariant variety of the same dimension ⇒ �.
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The Landsberg-Weyman Conjecture

Let Vi be complex vector spaces and let V ∗i be their dual spaces.

Conjecture (Conjecture 7.6. Landsberg-Weyman)

I(τ (Seg (PV ∗1 × · · · × PV ∗n ))) is generated by the quadrics in
S2(V1 ⊗ · · · ⊗ Vn) which have at least four

∧2 factors, the cubics with
four S2,1 factors and all other factors S3,0, and the quartics with three
S2,2’s and all other factors S4,0.

Theorem (-)

τ (Seg (PV ∗1 × · · · × PV ∗n )) is cut out set-theoretically by the cubics in
S3(V1 ⊗ · · · ⊗ Vn) with four S2,1 factors and all other factors S3,0, and
the quartics in S4(V1 ⊗ · · · ⊗ Vn) with three S2,2’s and all other factors
S4,0.
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Proof of the Landsberg-Weyman Conjecture

A standard argument: Because all of the modules of polynomials
occurring have partitions with no more than 2 parts, it suffices to
prove the case with all P1’s.

The degree four equations are actually the hyperdeterminantal
module HD! So by using the result V(HD) = Zn, we can proceed
by showing that τ(Seg(P1 × · · · × P1)) is precisely the subvariety
of Zn cut out by the cubics in the ideal: S2,1S2,1S2,1S2,1S3 . . . S3.

We directly computed the cubics and pulled them back to the
space of symmetric matrices via the principal minor map.

The result was the set of 2× 2 exclusive minors! But we just
showed that the image of the E-rank-1 symmetric matrices under
the principal minor map is the tangential variety.
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Thanks!
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