On the set-theoretic versions of conjectures of Holtz-Sturmfels and Landsberg-Weyman

Luke Oeding

University of Florence

January 19, 2010

Supported by NSF IRFP (\#0853000), and NSF GAANN (\#P200A060298)

Goals

- Let V be a vector space over \mathbb{C} and let $G \subset G L(V)$. A variety $X \subset \mathbb{P} V$ is a G-variety if $G . X \subset X$.
- Goal 1: Study a prototypical G-variety and learn how to study other G-varieties which arise in fields such as algebraic statistics, probability theory, signal processing, etc.
- Goal 2: Solve the Holtz-Sturmfels Conjecture (set-theoretic version) on the variety of principal minors of symmetric matrices.
- Bonus: Via a connection to principal minors, get a solution to Landsberg-Weyman Conjecture (set-theoretic version) on the tangential variety of the Segre product of projective spaces.

An example: Spectral graph theory

Let Γ be a graph with

- vertex set $Q_{0}=\left\{v_{1}, \ldots, v_{n}\right\}$
- edge set $Q_{1}=\left\{e_{i, j} \mid \overline{v_{i} v_{j}} \in \Gamma\right\}$.

The graph Laplacian of an undirected graph is a (symmetric) matrix

$$
\Delta(\Gamma)_{i, j}=\left\{\begin{array}{cc}
-1 & \text { if } i \neq j \text { and } e_{i, j} \in Q_{1} \\
0 & \text { if } i \neq j \text { and } e_{i, j} \notin Q_{1} \\
\operatorname{deg}\left(v_{i}\right) & \text { if } i=j
\end{array}\right.
$$

The principal minors of $\Delta(\Gamma)$ are invariants of the graph, in fact:
Theorem (Kirchoff's Matrix-Tree theorem (~1850's))
Any $(n-1) \times(n-1)$ principal minor of $\Delta(\Gamma)$ counts the number of spanning trees of Γ.

An example: Spectral graph theory

There are many generalizations of the Matrix-Tree Theorem, such as

Theorem (Matrix-Forest Theorem)

Let $\Delta(\Gamma)_{S}^{S}$ be the principal minor of $\Delta(\Gamma)$ indexed by S. Then $\Delta(\Gamma)_{S}^{S}=$ number of spanning forests of Γ rooted at vertices indexed by S.

The $\Delta(\Gamma)_{S}^{S}$ are graph invariants. The relations among principal minors are then also relations among these graph invariants.

Question

When does there exist a graph Γ with invariants $[v] \in \mathbb{P}^{2^{n}-1}$ specified by the principal minors of a symmetric matrix $\Delta(\Gamma)$?

Questions

- Holtz and Schneider, D. Wagner, ... : When is it possible to prescribe the principal minors of a symmetric matrix?
- Equivalently, when can you prescribe all the eigenvalues of a symmetric matrix and all of its principal submatrices?
- Algebraic reformulation: What is the defining ideal of the algebraic variety of principal minors of symmetric matrices?
- For $n \geq 3$ this is an overdetermined problem : $\binom{n+1}{2}$ versus 2^{n}.

Examples: 2×2 case

Define a (homogeneous) map:
$\varphi:$ symmetric matrices \rightarrow principal minors:

$$
\varphi\left(\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right), t\right)=\left[t^{2}, t a, t b, a b-c^{2}\right]
$$

When can we go backwards? Given $[w, x, y, z]$ is there a 2×2 matrix that has these principal minors? Need to solve: (WLOG assume $t=w=1$)

$$
\begin{gathered}
x=a \\
y=b \\
z=a b-c^{2} \Rightarrow c= \pm \sqrt{x y-z} \\
\varphi\left(\left(\begin{array}{cc}
x & \pm \sqrt{x y-z} \\
\pm \sqrt{x y-z} & y
\end{array}\right), 1\right)=[1, x, y, z]
\end{gathered}
$$

Conclude: Even in the $n \times n$ case, the $0 \times 0,1 \times 1$, and 2×2 minors determine a symmetric matrix up to the signs of the off-diagonal terms.

Examples 3×3 :

$$
\begin{gathered}
\varphi\left(\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right), t\right) \\
= \\
\quad\left[t^{3}, t^{2} x_{11}, t^{2} x_{22}, t\left(x_{11} x_{22}-x_{12}^{2}\right),\right. \\
t_{11} x_{33}, t\left(x_{21} x_{13}+2 x_{33}-x_{13}^{2}\right), t\left(x_{22} x_{13} x_{23}-x_{11} x_{23}^{2}-x_{22}^{2} x_{13}^{2}-x_{33} x_{12}^{2}\right]
\end{gathered}
$$

Given $\left[X^{[000]}, X^{[100]}, X^{[010]}, X^{[110]}, X^{[001]}, X^{[101]}, X^{[011]}, X^{[111]}\right]$ is there a matrix that maps to it?
Count parameters: 7 versus 8 - there must be some relation that holds!

First result

Theorem (Holtz-Sturmfels '07)

All relations among the principal minors of a 3×3 matrix are generated by ...this beautiful degree 4 homogeneous polynomial:

$$
\begin{gathered}
\left(X^{000}\right)^{2}\left(X^{111}\right)^{2}+\left(X^{100}\right)^{2}\left(X^{011}\right)^{2}+\left(X^{010}\right)^{2}\left(X^{101}\right)^{2}+\left(X^{110}\right)^{2}\left(X^{001}\right)^{2} \\
\quad+4 X^{000} X^{110} X^{101} X^{011}+4 X^{100} X^{010} X^{001} X^{111} \\
\quad-2 X^{000} X^{100} X^{011} X^{111}-2 X^{100} X^{010} X^{011} X^{101} \\
\\
-2 X^{000} X^{010} X^{101} X^{111}-2 X^{100} X^{001} X^{110} X^{011} \\
\\
-2 X^{000} X^{001} X^{110} X^{111}-2 X^{001} X^{010} X^{101} X^{110}
\end{gathered}
$$

- Cayley's hyperdeterminant of format $2 \times 2 \times 2$.

It is invariant under the action of $\mathfrak{S}_{3} \ltimes S L(2) \times S L(2) \times S L(2)$!

The Variety of Principal Minors of Symmetric Matrices

- The variety of principal minors of $n \times n$ symmetric matrices, Z_{n}, is defined by the principal minor map

$$
\begin{aligned}
& \varphi: \mathbb{P}\left(S^{2} \mathbb{C}^{n} \oplus \mathbb{C}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}\right)=\mathbb{P} \mathbb{C}^{2^{n}} \\
& {[A, t] \mapsto\left[t^{n}, t^{n-1} \Delta_{[10 \ldots 0]}(A), t^{n-1} \Delta_{[010 \ldots 0]}(A), t^{n-2} \Delta_{[110 \ldots, 0]}(A),\right.} \\
& t^{n-1} \Delta_{[0010 \ldots 0]}(A), t^{n-2} \Delta_{[1010 \ldots 0]}(A), t^{n-2} \Delta_{[0110 \ldots 0]}(A), \\
& \left.\ldots \quad . ., \Delta_{[1 \ldots 1]}(A)\right]
\end{aligned}
$$

where $\Delta_{I}(A)$ is the principal minor of A with rows indicated by I.

- Q: Given a vector v of length 2^{n}, how can you tell whether or not it arose in this way?
- A: Test whether v satisfies all the relations in $\mathcal{I}\left(Z_{n}\right)$.

Hidden Symmetry

Theorem (Landsberg, Holtz-Sturmfels)
Z_{n} is invariant under the action of $G=\mathfrak{S}_{n} \ltimes S L(2)^{\times n}$.

- Fact: A variety $X \subset \mathbb{P}^{N}$ is a G-variety \Leftrightarrow the ideal $\mathcal{I}(X)$ is a G-module.
- Z_{n} is a subvariety of $\mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$, where each $V_{i} \simeq \mathbb{C}^{2}$.
- KEY POINT: We must study $\mathcal{I}\left(Z_{n}\right) \subset \operatorname{Sym}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ as a G-module!
- Mantra: "Each irreducible module is either in or out!"

Slight Detour: A Geometric Proof of Symmetry

- For non-degenerate $\omega \in \bigwedge^{2} \mathbb{C}^{n}$, the Lagrangian Grassmannian is $G r_{\omega}(n, 2 n)=\{E \in G r(n, 2 n) \mid \omega(v, w)=0 \forall v, w \in E\}$.
- $G r_{\omega}(n, 2 n)$ is a homogeneous variety for $S p(2 n)$.
- $G r_{\omega}(n, 2 n)$ is the image of the rational map:

$$
\psi: \mathbb{P}\left(S^{2} \mathbb{C}^{n} \oplus \mathbb{C}\right) \quad-\rightarrow \quad \mathbb{P} \Gamma_{n} \simeq \mathbb{P}^{\binom{2 n}{n}-\binom{2 n}{n-2}-1}
$$

$\{$ symmetric matrix $\} \quad \mapsto \quad\{$ vector of all nonredundant minors $\}$

- The connection: Z_{n} is a linear projection of $G r_{\omega}(n, 2 n)$.
- Can use this projection to find symmetries of Z_{n} as a subgroup of $S p(2 n)$.
- Try to find projections of homogeneous varieties to study other G-varieties (later in the talk).

Multilinear Algebra

- $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)=$ homogeneous degree d polynomials on 2^{n} variables. It is a module for $G=S L\left(V_{1}\right) \times \cdots \times S L\left(V_{n}\right)$.
- If we choose a basis $\left\{x_{i}^{0}, x_{i}^{1}\right\}$ of $V_{i}^{*} \simeq \mathbb{C}^{2}$ for each i, then $V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}$ has the induced basis $x_{1}^{\epsilon_{1}} \otimes \cdots \otimes x_{n}^{\epsilon_{n}}=: X^{I}$.
- Then G acts on $V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}$ by change of basis in each factor: If $g=\left(g_{1}, \ldots, g_{n}\right) \in G$, then

$$
g \cdot X^{I}=\left(g_{1} \cdot x_{1}^{\epsilon_{1}}\right) \otimes \cdots \otimes\left(g_{n} \cdot x_{n}^{\epsilon_{n}}\right)
$$

and acts on $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ by the induced action:

$$
g \cdot\left(X^{I} X^{J} \ldots X^{K}\right)=\left(g \cdot X^{I}\right)\left(g \cdot X^{J}\right) \ldots\left(g \cdot X^{K}\right)
$$

- We have defined the action on a basis of each module, so we can just extend by linearity to get the action on the whole module.

Representation Theory

- Want to study $\mathcal{I}_{d}\left(Z_{n}\right) \subset S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$.
- Each irreducible $\mathfrak{S}_{n} \ltimes S L(2)^{\times n}$-module in $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ is isomorphic to one indexed by partitions π_{i} of d of the form :

$$
S_{\pi_{1}} S_{\pi_{2}} \ldots S_{\pi_{n}}:=\bigoplus_{\sigma \in \mathfrak{S}_{n}} S_{\pi_{\sigma(1)}} V_{1}^{*} \otimes S_{\pi_{\sigma(2)}} V_{2}^{*} \otimes \cdots \otimes S_{\pi_{\sigma(n)}} V_{n}^{*}
$$

- Can use the combinatorial information π_{1}, \ldots, π_{n} to construct the module.
- If M is an irreducible G-module, then $M=\{G . v\}$, some vector v use this as often as possible.
- This gives a finite list of vectors to test for ideal membership!
- Also gives a way to produce many polynomials in $\mathcal{I}\left(Z_{n}\right)$ from one polynomial.

An Example

The module $S_{(2,2)} V \subset V^{\otimes 4}$ is one dimensional, and every vector is a scalar multiple of

$$
h=2 X^{0011}-X^{1001}-X^{1010}-X^{0101}-X^{0110}+2 X^{1100}
$$

To find a polynomial in $S_{(2,2)} V_{1} \otimes S_{(2,2)} V_{2} \otimes S_{(2,2)} V_{3}$, we need to compute $h \otimes h \otimes h$ in $V_{1}^{\otimes 4} \otimes V_{2}^{\otimes 4} \otimes V_{3}^{\otimes 4}$, but we want a polynomial in $S^{4}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)$, so we just permute

$$
V_{1}^{\otimes 4} \otimes V_{2}^{\otimes 4} \otimes V_{3}^{\otimes 4} \rightarrow\left(V_{1} \otimes V_{2} \otimes V_{3}\right)^{\otimes 4}
$$

and symmetrize

$$
\left(V_{1} \otimes V_{2} \otimes V_{3}\right)^{\otimes 4} \rightarrow S^{4}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)
$$

An Example

Finally, we get the result

$$
\begin{aligned}
&\left(X^{000}\right)^{2}\left(X^{111}\right)^{2}+\left(X^{100}\right)^{2}\left(X^{011}\right)^{2}+\left(X^{010}\right)^{2}\left(X^{101}\right)^{2}+\left(X^{110}\right)^{2}\left(X^{001}\right)^{2} \\
&+4 X^{000} X^{110} X^{101} X^{011}+4 X^{100} X^{010} X^{001} X^{111} \\
&-2 X^{000} X^{100} X^{011} X^{111}-2 X^{100} X^{010} X^{011} X^{101} \\
&-2 X^{000} X^{010} X^{101} X^{111}-2 X^{100} X^{001} X^{110} X^{011} \\
&-2 X^{000} X^{001} X^{110} X^{111}-2 X^{001} X^{010} X^{101} X^{110}
\end{aligned}
$$

In fact, this is Cayley's hyperdeterminant of format $2 \times 2 \times 2$! It's an irreducible degree 4 polynomial on 8 variables.
It is invariant under the action of $\mathfrak{S}_{3} \ltimes S L(2) \times S L(2) \times S L(2)$.
It generates the module $S_{(2,2)} S_{(2,2)} S_{(2,2)}$.
It is the single equation defining the hypersurface Z_{3}.

Rephrasing of Previous Results

Theorem (Holtz-Sturmfels)

$\mathcal{I}\left(Z_{3}\right)$ is generated in degree 4 by $S_{(2,2)} S_{(2,2)} S_{(2,2)}$ (Cayley's Hyperdeterminant of format $2 \times 2 \times 2$).

Theorem (H-S)

$\mathcal{I}\left(Z_{4}\right)$ is generated in degree 4 by $S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ (A hyperdeterminantal module).

Remark: $S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ is the span of the G-orbit of the $2 \times 2 \times 2$ hyperdeterminant on the variables $X^{[* * * 0]}$.

Conjecture (H-S)

$\mathcal{I}\left(Z_{n}\right)$ is generated in degree 4 by $S_{(4)} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ (the hyperdeterminantal module).

A Limit of the Computer's Usefulness

- For $n=3$: A single irreducible degree 4 polynomial on 8 variables cuts out the irreducible hypersurface in \mathbb{P}^{7}.
- For $n=4$: 20 degree 4 polynomials on 16 variables. Macaulay 2 \Rightarrow the ideal is prime and has the correct dimension. But Z_{4} is an irreducible variety + commutative algebra $\Rightarrow \square$.
- For $n=5$: 250 degree 4 polynomials on 32 variables. Sadly, the computer melted.
- For $n=6$: 2500 degree 4 polynomials on 64 variables.
- For $n=n:\binom{n}{3} 5^{n-3}$ degree 4 polynomials on 2^{n} variables. What can we say in general without the computer?

New Results

Theorem (-)

Let $H D:=\left\{\Im_{n} \ltimes S L(2)^{\times n}\right.$. hyp $\left._{123}\right\}=S_{(4)} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$. The variety Z_{n} is cut out set-theoretically by the hyperdeterminantal module.

$$
\mathcal{V}(H D)=Z_{n} .
$$

- To prove that $Z_{n} \subset \mathcal{V}(H D)$, show that hyp (a highest weight vector for the irreducible module $H D$) vanishes on every point of Z_{n}. This follows from the 3×3 case.
- To prove that $Z_{n} \supset \mathcal{V}(H D)$, need a geometric understanding of zero-sets of modules with similar properties to $H D$.

Outline of proof of main theorem

- Want to show $\mathcal{V}(H D) \subset Z_{n}$ - do induction on n. For $z \in \mathcal{V}(H D)$, attempt to construct a matrix $A \in S^{2} \mathbb{C}^{n}$ so that $A \mapsto z \in \mathcal{V}(H D)$.
- Have already seen: the $0 \times 0,1 \times 1$ and 2×2 principal minors of a symmetric matrix determine the matrix up to the signs of the off-diagonal terms.
- For $n \geq 4$ can show that if two symmetric matrices have the same $0 \times 0 \ldots 3 \times 3$ principal minors, then 4×4 principal minors agree also. Then iterate.
- We show that points in $\mathcal{V}(H D)$ have essentially the same property: i.e. if $z, w \in \mathcal{V}(H D)$ and $z_{I}=w_{I}$ for all $I \neq[1, \ldots, 1]$ then $z=w$.
- Main Tool: a geometric characterization of augmented modules.

Characterizing the zero set of $\mathcal{V}(H D)$ via augmentation case $n+1, H D=\underbrace{S_{(4)} \ldots S_{(4)}}_{n-2} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ is still degree 4 .

- What can we say about zero set of an augmented ideal $\mathcal{V}\left(\mathcal{I}_{d}(X) \otimes S^{d} V^{*}\right)$ based on $\mathcal{V}\left(\mathcal{I}_{d}(X)\right)$?

Lemma (inspired by Landsberg-Manivel lemma on prolongation)
Let $X \subset \mathbb{P} W$ and let $\tilde{X}=\mathcal{V}\left(\mathcal{I}_{d}(X)\right)$ (notation).

$$
\mathcal{V}\left(\mathcal{I}_{d}(X) \otimes S^{d} V^{*}\right)=\bigcup_{L \subset \tilde{X}} \mathbb{P}(L \otimes V),
$$

where $L \subset \tilde{X}$ are linear subspaces.

What does this buy us?

Consequence

Assume that $H D=\bigoplus_{i} H D_{\hat{i}} \otimes S^{4} V_{i} \subset S^{4}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ and $V_{i} \simeq \mathbb{C}^{2}$, then

$$
\mathcal{V}(H D)=\cap_{i=1}^{n}\left(\bigcup_{L \subset V\left(H D_{\hat{i}}\right)} \mathbb{P}\left(L \otimes V_{i}\right)\right) .
$$

- Suppose $z \in \mathcal{V}(H D)=\mathcal{V}\left(\bigoplus_{i} H D_{\hat{i}} \otimes S^{4} V_{i}\right)$, and assume for induction that $\mathcal{V}\left(H D_{\hat{i}}\right) \simeq Z_{n-1}$.
- Then our geometric realization gives n different expressions for z,

$$
z=\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}+\varphi\left(\left[B^{(i)}, s^{(i)}\right]\right) \otimes x_{i}^{1},
$$

where $A^{(i)}, B^{(i)} \in S^{2} \mathbb{C}^{n-1}$ and $\left\{x_{i}^{0}, x_{i}^{1}\right\}=V_{i}$.

- We can use this information (+ technical details) to build an $n \times n$ matrix A so that $\varphi([A, t])=z$, and this proves the theorem.

The tangential variety to the Segre product

- The Segre Variety, i.e the variety of rank one tensors is $\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)=\left\{\left[v_{1} \otimes \cdots \otimes v_{n}\right] \mid v_{i} \in V_{i}\right\} \subset \mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$.
- If $X \subset \mathbb{P}^{N}$ is a smooth variety, define the tangential variety $\tau(X) \subset \mathbb{P}(V)$ by

$$
\tau(X):=\cup_{x \in X} \tilde{T}_{x} X
$$

- $\tau\left(\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)\right)=\left\{\left[\sum_{i=1}^{n} v_{1} \otimes \cdots \otimes v_{i}^{\prime} \otimes \cdots \otimes v_{n}\right] \mid v_{i}, v_{i}^{\prime} \in V_{i}\right\}$.
- $\tau\left(S e g\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right)\right)$ is a $\left(S L(2)^{\times n}\right) \ltimes \mathfrak{S}_{n}$-variety. $\operatorname{dim}=2 n \ll\binom{n+1}{2} \Rightarrow$ too small to be equal to Z_{n} for $n \geq 4$.
- $\tau\left(\operatorname{Seg}\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right)\right) \subset Z_{n}$ for $n \geq 3$, with equality for $n=3$.

Exclusive rank

The standard notion of rank is destroyed by the $S L(2)^{\times n}$ action.
For a matrix A, the minor $\Delta_{J}^{I}(A)$ is said to be exclusive if $I \cap J=\emptyset$, i.e. the minor has no coincidental row and column indices.

The matrix A has exclusive-rank (E-rank) $\leq k$ if all of its $k+1 \times k+1$ exclusive minors vanish. (Laplace expansion implies uniqueness.)

Proposition

The variety of principal minors of symmetric matrices with E-rank $\leq k$ is $\left(S L(2)^{\times n}\right) \ltimes \mathfrak{S}_{n}$-invariant.

Idea of proof: Can use the projection of the Lagrangian Grassmannian just like the case of Z_{n}. Find that each exclusive minor is fixed by the action of $S L(2)^{\times n}$ when viewed as a subgroup of $S P(2 n)$ acting on the space of all minors. This symmetry "survives" the projection to Z_{n}.

Principal minors of low E-rank matrices

Proposition

The image of the matrices with E-rank-0 under φ is

$$
\operatorname{Seg}\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right)
$$

The image of the symmetric matrices with E-rank ≤ 1 under φ is

$$
\tau\left(S e g\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right)\right)
$$

Rough idea of proof: It is easy to show that a vector of principal minors of an E-rank-1 matrix is a point on the tangential variety. To go the other way, we show that every point on the tangential variety is in the $S L(2)^{\times n}$-orbit of the set of principal minors of rank-1 symmetric matrices (usual rank).
The set of principal minors of E-rank ≤ 1 symmetric matrices is an irreducible $S L(2)^{\times n}$-invariant variety of the same dimension $\Rightarrow \square$.

The Landsberg-Weyman Conjecture

Let V_{i} be complex vector spaces and let V_{i}^{*} be their dual spaces.

Conjecture (Conjecture 7.6. Landsberg-Weyman)

$I\left(\tau\left(\operatorname{Seg}\left(\mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*}\right)\right)\right)$ is generated by the quadrics in $S^{2}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ which have at least four \bigwedge^{2} factors, the cubics with four $S_{2,1}$ factors and all other factors $S_{3,0}$, and the quartics with three $S_{2,2}$'s and all other factors $S_{4,0}$.

Theorem (-)

$\tau\left(S e g\left(\mathbb{P} V_{1}^{*} \times \cdots \times \mathbb{P} V_{n}^{*}\right)\right)$ is cut out set-theoretically by the cubics in $S^{3}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ with four $S_{2,1}$ factors and all other factors $S_{3,0}$, and the quartics in $S^{4}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ with three $S_{2,2}$'s and all other factors $S_{4,0}$.

Proof of the Landsberg-Weyman Conjecture

- A standard argument: Because all of the modules of polynomials occurring have partitions with no more than 2 parts, it suffices to prove the case with all \mathbb{P}^{1} 's.
- The degree four equations are actually the hyperdeterminantal module $H D$! So by using the result $\mathcal{V}(H D)=Z_{n}$, we can proceed by showing that $\tau\left(\operatorname{Seg}\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right)\right)$ is precisely the subvariety of Z_{n} cut out by the cubics in the ideal: $S_{2,1} S_{2,1} S_{2,1} S_{2,1} S_{3} \ldots S_{3}$.
- We directly computed the cubics and pulled them back to the space of symmetric matrices via the principal minor map.
- The result was the set of 2×2 exclusive minors! But we just showed that the image of the E-rank-1 symmetric matrices under the principal minor map is the tangential variety.

Thanks!

