The Variety of Principal Minors of Symmetric Matrices and its Set Theoretic Defining Equations

Luke Oeding

University of Florence

October 22, 2009

Supported by NSF IRFP (\#0853000), and NSF GAANN (\#P200A060298)

Goals

- Let $G \subset G L(V), V$ - vector space over \mathbb{C}. A variety $X \subset \mathbb{P} V$ is a G-variety if $G . X \subset X$.
- Goal 1: Study a prototypical G-variety and learn how to study other G-varieties which arise in fields such as algebraic statistics, probability theory, signal processing, etc.).
- Goal 2: Solve the Holtz-Sturmfels Conjecture (set theoretic version).

Questions

- A principal minor of a matrix A is the determinant of a submatrix formed by striking out the same rows and columns of A, i.e. centered on the diagonal.
- Holtz and Schneider, D. Wagner: When is it possible to prescribe the principal minors of a symmetric matrix?
- Equivalently, when can you prescribe all the eigenvalues of a symmetric matrix and all of its principal submatrices?
- For $n \geq 3$ this is an overdetermined problem : $\binom{n+1}{2}$ versus 2^{n}.

Examples: 2×2 case

Define a (homogeneous) map:
$\varphi:$ symmetric matrices \rightarrow principal minors:

$$
\varphi\left(\left(\begin{array}{ll}
a & c \\
c & b
\end{array}\right), t\right)=\left[t^{2}, t a, t b, a b-c^{2}\right]
$$

When can we go backwards? Given $[w, x, y, z]$ is there a 2×2 matrix that has these principal minors? Need to solve: (WLOG assume $t=w=1$)

$$
\begin{gathered}
x=a \\
y=b \\
z=a b-c^{2} \Rightarrow c= \pm \sqrt{x y-z} \\
\varphi\left(\left(\begin{array}{cc}
x & \pm \sqrt{x y-z} \\
\pm \sqrt{x y-z} & y
\end{array}\right), 1\right)=[1, x, y, z]
\end{gathered}
$$

Conclude: Even in the $n \times n$ case, the $0 \times 0,1 \times 1$, and 2×2 minors determine a symmetric matrix up to the signs of the off-diagonal terms.

Examples 3×3 :

$$
\begin{gathered}
\varphi\left(\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{12} & x_{22} & x_{23} \\
x_{13} & x_{23} & x_{33}
\end{array}\right), t\right) \\
= \\
\quad\left[t^{3}, t^{2} x_{11}, t^{2} x_{22}, t\left(x_{11} x_{22}-x_{12}^{2}\right),\right. \\
t_{11} x_{33}, t\left(x_{21} x_{13}+2 x_{33}-x_{13}^{2}\right), t\left(x_{22} x_{13} x_{23}-x_{11} x_{23}^{2}-x_{22}^{2} x_{13}^{2}-x_{33} x_{12}^{2}\right]
\end{gathered}
$$

Given $\left[X^{[000]}, X^{[100]}, X^{[010]}, X^{[110]}, X^{[001]}, X^{[101]}, X^{[011]}, X^{[111]}\right]$ is there a matrix that maps to it?
Count parameters: 7 versus 8 - there must be some relation that holds!

The First Relation

$$
\begin{aligned}
& x_{12}^{2}=X^{100} X^{010}-X^{110} \\
& x_{13}^{2}=X^{100} X^{001}-X^{101} \\
& x_{23}^{2}=X^{001} X^{010}-X^{011}
\end{aligned}
$$

$$
X^{111}=X^{100} X^{010} X^{001}-X^{100} x_{23}^{2}-X^{010} x_{13}^{2}-X^{001} x_{12}^{2}+2 x_{12} x_{13} x_{23}
$$

$$
\left(X^{111}-X^{100} X^{010} X^{001}+X^{100} x_{23}^{2}+X^{010} x_{13}^{2}+X^{001} x_{12}^{2}\right)^{2}
$$

$$
=4\left(x_{12} x_{13} x_{23}\right)^{2}
$$

$$
\begin{array}{r}
0=\left(X^{111}\right)^{2}+\left(X^{100}\right)^{2}\left(X^{011}\right)^{2}+\left(X^{010}\right)^{2}\left(X^{101}\right)^{2}+\left(X^{110}\right)^{2}\left(X^{001}\right)^{2} \\
+4 X^{110} X^{101} X^{011}+4 X^{100} X^{010} X^{001} X^{111} \\
-2 X^{100} X^{011} X^{111}-2 X^{100} X^{010} X^{011} X^{101}-2 X^{010} X^{101} X^{111} \\
-2 X^{100} X^{001} X^{110} X^{011}-2 X^{001} X^{110} X^{111}-2 X^{001} X^{010} X^{101} X^{110}
\end{array}
$$

First result

Theorem (Holtz-Sturmfels '07)

All relations among the principal minors of a 3×3 matrix are generated by ...this beautiful degree 4 homogeneous polynomial:

$$
\begin{array}{r}
\left(X^{000}\right)^{2}\left(X^{111}\right)^{2}+\left(X^{100}\right)^{2}\left(X^{011}\right)^{2} \\
+\left(X^{010}\right)^{2}\left(X^{101}\right)^{2}+\left(X^{110}\right)^{2}\left(X^{001}\right)^{2} \\
+4 X^{000} X^{110} X^{101} X^{011}+4 X^{100} X^{010} X^{001} X^{111} \\
-2 X^{000} X^{100} X^{011} X^{111}-2 X^{100} X^{010} X^{011} X^{101} \\
-2 X^{000} X^{010} X^{101} X^{111}-2 X^{100} X^{001} X^{110} X^{011} \\
-2 X^{000} X^{001} X^{110} X^{111}-2 X^{001} X^{010} X^{101} X^{110}
\end{array}
$$

-Cayley's hyperdeterminant of format $2 \times 2 \times 2$. Notice: It is invariant under the action of $\mathfrak{S}_{3} \ltimes S L(2) \times S L(2) \times S L(2)$!

The Variety of Principal Minors of Symmetric Matrices

- The variety of principal minors of $n \times n$ symmetric matrices, Z_{n}, is defined by the following rational map

$$
\left.\begin{array}{r}
\varphi: \mathbb{P}\left(S^{2} \mathbb{C}^{n} \oplus \mathbb{C}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}\right)=\mathbb{P C}^{2^{n}} \\
{[A, t] \mapsto\left[t^{n}, t^{n-1} \Delta_{[10 \ldots 0]}(A), t^{n-1} \Delta_{[010 \ldots 0]}(A), t^{n-2} \Delta_{[110 \ldots, 0]}(A),\right.} \\
t^{n-1} \Delta_{[0010 \ldots 0]}(A), t^{n-2} \Delta_{[1010 \ldots 0]}(A), t^{n-2} \Delta_{[0110 \ldots 0]}(A), \\
\ldots
\end{array}, \ldots, \Delta_{[1 \ldots 1]}(A)\right] \text {. } \quad .
$$

where $\Delta_{[I]}(A)$ is the principal minor of A with rows indicated by I.

- Q: Given a vector v of length 2^{n}, how can you tell whether or not it arose in this way?
- A: test whether v satisfies all the relations in $\mathcal{I}\left(Z_{n}\right)$.

Hidden Symmetry

Theorem (Landsberg,Holtz-Sturmfels)

Z_{n} is invariant under the action of $G=\mathfrak{S}_{n} \ltimes S L(2)^{\times n}$.

- Fact: A variety $X \subset \mathbb{P}^{N}$ is a G-variety \Leftrightarrow the ideal $\mathcal{I}(X)$ is a G-module.
- Z_{n} is a subvariety of $\mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$, where each $V_{i} \simeq \mathbb{C}^{2}$.
- KEY POINT: We must study $\mathcal{I}\left(Z_{n}\right) \subset \operatorname{Sym}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ as a G-module!
- Mantra: "Each irreducible module is either in or out!"

Slight Detour: A Geometric Proof of Symmetry

- For non-degenerate $\omega \in \bigwedge^{2} \mathbb{C}^{n}$, the Lagrangian Grassmannian is $G r_{\omega}(n, 2 n)=\{E \in G r(n, 2 n) \mid \omega(v, w)=0 \forall v, w \in E\}$.
- $G r_{\omega}(n, 2 n)$ is a homogeneous variety for $S p(2 n)$.
- $G r_{\omega}(n, 2 n)$ is the image of the rational map:

$$
\psi: \mathbb{P}\left(S^{2} \mathbb{C}^{n} \oplus \mathbb{C}\right) \quad \rightarrow \quad \mathbb{P} \Gamma_{n} \simeq \mathbb{P}^{\left({ }^{2 n} \begin{array}{l}
n
\end{array}\right)-\binom{2 n}{n-2}-1}
$$

$\{$ symmetric matrix $\} \quad \mapsto \quad\{$ vector of all nonredundant minors $\}$

- The connection: Z_{n} is a linear projection of $G r_{\omega}(n, 2 n)$.
- Can use this projection to find the symmetry group of Z_{n} as a subgroup of $S p(2 n)$.
- Try to find projections of homogeneous varieties to study other G-varieties.

Multilinear Algebra

- $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)=$ homogeneous degree d polynomials on 2^{n} variables. It is a module for $G=S L\left(V_{1}\right) \times \cdots \times S L\left(V_{n}\right)$
- If we choose a basis $\left\{x_{i}^{0}, x_{i}^{1}\right\}$ of $V_{i}^{*} \simeq \mathbb{C}^{2}$ for each i, then $V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}$ has the induced basis $x_{1}^{\epsilon_{1}} \otimes \cdots \otimes x_{n}^{\epsilon_{n}}=: X^{I}$.
- Then G acts on $V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}$ by change of basis in each factor: If $g=\left(g_{1}, \ldots, g_{n}\right) \in G$, then

$$
g \cdot X^{I}=\left(g_{1} \cdot x_{1}^{\epsilon_{1}}\right) \otimes \cdots \otimes\left(g_{n} \cdot x_{n}^{\epsilon_{n}}\right)
$$

and acts on $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ by the induced action:

$$
g \cdot\left(X^{I} X^{J} \ldots X^{K}\right)=\left(g \cdot X^{I}\right)\left(g \cdot X^{J}\right) \ldots\left(g \cdot X^{K}\right)
$$

- We have defined the action on a basis of each module, so we can just extend by linearity to get the action on the whole module.

Representation Theory

- Want to study $\mathcal{I}_{d}\left(Z_{n}\right) \subset S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$.
- Each irreducible $\mathfrak{S}_{n} \ltimes S L(2)^{\times n}$-module in $S^{d}\left(V_{1}^{*} \otimes \cdots \otimes V_{n}^{*}\right)$ is isomorphic to one indexed by partitions π_{i} of d of the form :

$$
S_{\pi_{1}} S_{\pi_{2}} \ldots S_{\pi_{n}}:=\bigoplus_{\sigma \in \mathfrak{S}_{n}} S_{\pi_{\sigma(1)}} V_{1}^{*} \otimes S_{\pi_{\sigma(2)}} V_{2}^{*} \otimes \cdots \otimes S_{\pi_{\sigma(n)}} V_{n}^{*}
$$

- Can use the combinatorial information π_{1}, \ldots, π_{n} to construct the module.
- If M is an irreducible G-module, then $M=\{G . v\}$, some vector v use this as often as possible.
- This gives a finite list of vectors to test for ideal membership!
- Also gives a way to produce many polynomials in $\mathcal{I}\left(Z_{n}\right)$ from one polynomial.

An Example

The module $S_{(2,2)} V \subset V^{\otimes 4}$ is one dimensional, and every vector is a scalar multiple of

$$
h=2 X^{0011}-X^{1001}-X^{1010}-X^{0101}-X^{0110}+2 X^{1100}
$$

To find a polynomial in $S_{(2,2)} V_{1} \otimes S_{(2,2)} V_{2} \otimes S_{(2,2)} V_{3}$, we need to compute $h \otimes h \otimes h$ in $V_{1}^{\otimes 4} \otimes V_{2}^{\otimes 4} \otimes V_{3}^{\otimes 4}$, but we want a polynomial in $S^{4}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)$, so we just permute

$$
V_{1}^{\otimes 4} \otimes V_{2}^{\otimes 4} \otimes V_{3}^{\otimes 4} \rightarrow\left(V_{1} \otimes V_{2} \otimes V_{3}\right)^{\otimes 4}
$$

and symmetrize

$$
\left(V_{1} \otimes V_{2} \otimes V_{3}\right)^{\otimes 4} \rightarrow S^{4}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)
$$

An Example

Finally, we get the result

$$
\begin{array}{r}
\left(X^{000}\right)^{2}\left(X^{111}\right)^{2}+\left(X^{100}\right)^{2}\left(X^{011}\right)^{2} \\
+\left(X^{010}\right)^{2}\left(X^{101}\right)^{2}+\left(X^{110}\right)^{2}\left(X^{001}\right)^{2} \\
+4 X^{000} X^{110} X^{101} X^{011}+4 X^{100} X^{010} X^{001} X^{111} \\
-2 X^{000} X^{100} X^{011} X^{111}-2 X^{100} X^{010} X^{011} X^{101} \\
-2 X^{000} X^{010} X^{101} X^{111}-2 X^{100} X^{001} X^{110} X^{011} \\
-2 X^{000} X^{001} X^{110} X^{111}-2 X^{001} X^{010} X^{101} X^{110}
\end{array}
$$

In fact, this is Cayley's hyperdeterminant of format $2 \times 2 \times 2$! It's an irreducible degree 4 polynomial on 8 variables.
It is invariant under the action of $\mathfrak{S}_{3} \ltimes S L(2) \times S L(2) \times S L(2)$.
It generates the module $S_{(2,2)} S_{(2,2)} S_{(2,2)}$.
It is the single equation defining the hypersurface Z_{3}.

Rephrasing of Previous Results

Theorem (Holtz-Sturmfels)

$\mathcal{I}\left(Z_{3}\right)$ is generated in degree 4 by $S_{(2,2)} S_{(2,2)} S_{(2,2)}$ (Cayley's Hyperdeterminant of format $2 \times 2 \times 2$).

Theorem (H-S)

$\mathcal{I}\left(Z_{4}\right)$ is generated in degree 4 by $S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ (A hyperdeterminantal module).

Remark: $S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ is the span of the G-orbit of the $2 \times 2 \times 2$ hyperdeterminant on the variables $X^{[* * * 0]}$.

Conjecture (H-S)

$\mathcal{I}\left(Z_{n}\right)$ is generated in degree 4 by $S_{(4)} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ (the hyperdeterminantal module).

A Limit of the Computer's Usefulness

- For $n=3$: A single irreducible degree 4 polynomial on 8 variables cuts out the irreducible hypersurface in \mathbb{P}^{7}.
- For $n=4: 20$ degree 4 polynomials on 16 variables. Macaulay $2 \Rightarrow$ the ideal is prime and has the correct dimension. But Z_{4} is an irreducible variety + some facts from comm. alg. \Rightarrow done.
- For $n=5$: 250 degree 4 polynomials on 32 variables. Sadly, the computer has not yet told me whether or not this ideal is prime.
- For $n=6$: 2500 degree 4 polynomials on 64 variables. :-(
- For $n=n:\binom{n}{3} 5^{n-3}$ degree 4 polynomials on 2^{n} variables. What can we say in general without the computer?

New Results

Theorem (-)

Let $H D:=\left\{\mathfrak{S}_{n} \ltimes S L(2)^{\times n}\right.$. hyp $\left._{123}\right\}=S_{(4)} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$. The variety Z_{n} is cut out set theoretically by the hyperdeterminantal module.

$$
\mathcal{V}(H D)=Z_{n} .
$$

- To prove that $Z_{n} \subset \mathcal{V}(H D)$, show that hyp, a highest weight vector for the irreducible module M, vanishes on every point of Z_{n}. Follows from 3×3 case.
- To prove that $Z_{n} \supset \mathcal{V}(H D)$, a more geometric understanding of the zero set, $\mathcal{V}(H D)$, is needed.

Outline of proof of main theorem

- Want to show $\mathcal{V}(H D) \subset Z_{n}$ - do induction on n.
- Give a geometric characterization of $\mathcal{V}(H D)$.
- Attempt to construct a matrix $A \in S^{2} \mathbb{C}^{n}$ that maps to $z \in \mathcal{V}(H D)$.
- Identify possible obstructions as G-modules.
- Identify the space of obstructions geometrically.
- Show $\mathcal{V}(H D)$ also contains the space of obstructions.

Applications outside of geometry

- Spectral graph theory.
- Probability theory - covariance of random variables.
- Statistical physics - determinantal point processes.
- Matrix theory - P-matrices, GKK- τ matrices.

Spectral Graph Theory

Let Γ be a graph with

- vertex set $Q_{0}=\left\{v_{1}, \ldots, v_{n}\right\}$
- edge set $Q_{1}=\left\{e_{i, j} \mid \overrightarrow{v_{i} v_{j}} \in \Gamma\right\}$.

The graph Laplacian of an undirected graph is a matrix

$$
\Delta(\Gamma)_{i, j}=\left\{\begin{array}{cc}
-1 & \text { if } i \neq j \text { and } e_{i, j} \in Q_{1} \\
0 & \text { if } i \neq j \text { and } e_{i, j} \notin Q_{1} \\
\operatorname{deg}\left(v_{i}\right) & \text { if } i=j
\end{array}\right.
$$

The principal minors of $\Delta(\Gamma)$ are invariants of the graph, in fact:

Theorem (Kirchoff's Matrix-Tree theorem (~1850's))

Any $(n-1) \times(n-1)$ principal minor of $\Delta(\Gamma)$ counts the number of spanning trees of Γ.

Spectral Graph Theory

There are many generalizations of the Matrix-Tree Theorem, such as

Theorem (Matrix-Forest Theorem)

$\Delta(\Gamma)_{S}^{S}=$ number of spanning forests of Γ rooted at vertices indexed by S, where $\Delta(\Gamma)_{S}^{S}$ is the principal minor of $\Delta(\Gamma)$ indexed by S.

The $\Delta(\Gamma){ }_{S}^{S}$ are graph invariants. The relations among principal minors are then also relations among these graph invariants.

Corollary (Corollary to Main Theorem)

There exists an undirected weighted graph Γ with invariants $[v] \in \mathbb{P}^{2^{n}-1}$ specified by the principal minors of a symmetric matrix $\Delta_{w t}(\Gamma)$ if and only if $[v]$ is a zero of all the polynomials in the hyperdeterminantal module.

Concluding Remarks

- This problem shows how representation theory and geometry can be used to prove exciting new results.
- We resolved the set theoretic version of the Holtz-Sturmfels conjecture, but more work needs to be done in order to prove the ideal theoretic version.
- Thank you for attending! Special thanks to my thesis advisor, J.M. Landsberg.

Characterizing the zero set of $\mathcal{V}(H D)$ via augmentation

- Notice that $H D_{n}=S_{(4) \ldots} \ldots S_{(4)} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ and $H D_{n+1}=\underbrace{S_{(4)} \ldots S_{(4)}}_{n-2} S_{(2,2)} S_{(2,2)} S_{(2,2)}$ is still degree 4.
- What can we say about zero set of an augmented ideal $\mathcal{V}\left(\mathcal{I}_{d}(X) \otimes S^{d} V^{*}\right)$ based on $\mathcal{V}\left(\mathcal{I}_{d}(X)\right)$?

Lemma (inspired by Landsberg-Manivel lemma regarding prolongation)
Let $X \subset \mathbb{P} W$ and let $\tilde{X}=\mathcal{V}\left(\mathcal{I}_{d}(X)\right)$ (notation).

$$
\mathcal{V}\left(\mathcal{I}_{d}(X) \otimes S^{d} V^{*}\right)=S e g(\tilde{X} \times \mathbb{P} V) \cup \bigcup_{L \subset \tilde{X}} \mathbb{P}(L \otimes V)
$$

where $L \subset \tilde{X}$ are linear subspaces.

What does this buy us?

Consequence

Assume that $H D=\bigoplus_{i} H D_{\hat{i}} \otimes S^{d} V_{i} \subset S^{d}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ and $V_{i} \simeq \mathbb{C}^{2}$, then

$$
\mathcal{V}(H D)=\cap_{i=1}^{n}\left(\bigcup_{L \subset V\left(H D_{\hat{i}}\right)} \mathbb{P}\left(L \otimes V_{i}\right)\right) .
$$

- Suppose $z \in \mathcal{V}(H D)=\mathcal{V}\left(\oplus_{i} H D_{\hat{i}} \otimes S^{d} V_{i}\right)$, and assume for induction that $\mathcal{V}\left(H D_{\hat{i}}\right) \simeq Z_{n-1}$.
- Then our geometric realization gives n different expressions for z,

$$
z=\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}+\varphi\left(\left[B^{(i)}, s^{(i)}\right]\right) \otimes x_{i}^{1}, \quad \text { (no summation) }
$$

where $A^{(i)}, B^{(i)}$ are $n-1 \times n-1$ symmetric matrices, and $\left\{x_{i}^{0}, x_{i}^{1}\right\}=V_{i}$.

- If we can use this information to build an $n \times n$ matrix A so that $\varphi([A, t])=z$, we will have proved the theorem.

Building a matrix

We have n expressions

$$
z=\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}+\varphi\left(\left[B^{(i)}, s^{(i)}\right]\right) \otimes x_{i}^{1}
$$

and the term $\varphi\left(\left[A^{(1)}, t^{(1)}\right]\right) \otimes x_{1}^{0}$ can be thought of as the principal minors (not involving the first row and column) of the matrix

$$
A\left(\overrightarrow{x_{1}}\right)=\left(\begin{array}{ccccc}
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, n} \\
x_{1,2} & a_{1,2}^{(1)} & a_{2,2}^{(1)} & \ldots & a_{2, n}^{(1)} \\
& \vdots & \vdots & \vdots & \\
& a_{1, n}^{(1)} & a_{2, n}^{(1)} & \ldots & a_{n, n}^{(1)}
\end{array}\right)
$$

where $x_{1, i}$ are variables, and the entries of $A^{(1)}=\left(a_{i, j}^{(1)}\right)$, are fixed. The other expressions $\varphi\left(\left[A^{(i)}, t^{(i)}\right]\right) \otimes x_{i}^{0}$ have a similar interpretation.

Building a matrix

- The 1×1 principal minors determine the diagonal entries and the 2×2 principal minors are all of the form $a_{i, i} a_{j, j}-a_{i, j}^{2}$ the 2×2 principal minors determine the off diagonal entries up to sign.
- We know that the principal minors $\Delta_{I}\left(A\left(\overrightarrow{x_{i}}\right)\right)$ and $\Delta_{I}\left(A\left(\overrightarrow{x_{j}}\right)\right)$ agree whenever $i, j \notin I$.
- Our question comes down to whether we can make consistent choices so that the matrices $A\left(\overrightarrow{x_{i}}\right)$ agree.
- It suffices to prove that if we fix $A^{(1)}$, that we can choose $\overrightarrow{x_{1}}$ and $A^{(i)}$ so that all of the principal minors agree where the matrices overlap.
- Construct $A\left(\overrightarrow{x_{i}}\right)^{(j)}$, by deleting the $j^{\text {th }}$ row and column.
- By induction, it suffices to consider

$$
A\left(x_{1,2}\right)=\left(\begin{array}{ccccc}
a_{1,1} & x_{1,2} & a_{1,3} & \ldots & a_{1, n} \\
x_{1,2} & a_{2,2} & \ldots & \ldots & a_{2, n} \\
a_{1,3} & \vdots & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
a_{1, n} & a_{2, n} & \ldots & & a_{n, n}
\end{array}\right)
$$

and show that we can pick $x_{1,2}$ so that all of the principal minors of $A\left(\overrightarrow{x_{i}}\right)^{(j)}$ agree.

- We will have only determined that the matrix $A\left(x_{1,2}\right)$ has all the correct principal minors (matching our point $z \in \mathcal{V}(H D)$) except possibly the determinant.

Almost...

Lemma (The Almost Lemma, $n \geq 4$.)
Suppose $[z]=\left[z_{I} X^{I}\right] \in \mathcal{V}(H D)$, and $\left[v_{A}\right]=\left[v_{A, I} X^{I}\right]=[\varphi([A, t])] \in Z_{n}$ are such that $z_{I}=v_{A, I}$ for all $I \neq[1, \ldots, 1]$. If $z_{[1, \ldots, 1]} \neq v_{A,[1, \ldots, 1]}$, then

$$
[z] \in \bigcup_{\substack{\left|I_{s}\right| \leq 2 \\ 1 \leq s \leq m}}\left(\operatorname{Seg}\left(\mathbb{P} V_{I_{1}} \times \cdots \times \mathbb{P} V_{I_{m}}\right)\right) \subset Z_{n} .
$$

We have essentially made a reduction to a problem in a single variable. Once the obstructions to solving this problem are identified as a G-module, the proof of this lemma is an application of the geometric characterization above.

Almost...but what does this buy me?

The lemma says that $\operatorname{Seg}\left(\mathbb{P} V_{I_{1}} \times \cdots \times \mathbb{P} V_{I_{m}}\right) \subset Z_{n}$.

- In fact, every point in $S e g\left(\mathbb{P} V_{I_{1}} \times \cdots \times \mathbb{P} V_{I_{m}}\right) \subset Z_{n}$ comes from a block diagonal matrix with only 1×1 and 2×2 blocks.
- Such a matrix is a special case of a symmetric tri-diagonal matrix, and it's a fact that none of its principal minors depend on the sign of the off diagonal terms.
- We use this fact iteratively in our induction for the proof of the final lemma.

