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Goals

Let G ⊂ GL(V ), V - vector space over C. A variety X ⊂ PV is a
G-variety if G.X ⊂ X.

Goal 1: Study a prototypical G-variety and learn how to study
other G-varieties which arise in fields such as algebraic statistics,
probability theory, signal processing, etc.).

Goal 2: Solve the Holtz-Sturmfels Conjecture (set theoretic
version).
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Questions

A principal minor of a matrix A is the determinant of a submatrix
formed by striking out the same rows and columns of A, i.e.
centered on the diagonal.

Holtz and Schneider, D. Wagner: When is it possible to prescribe
the principal minors of a symmetric matrix?

Equivalently, when can you prescribe all the eigenvalues of a
symmetric matrix and all of its principal submatrices?

For n ≥ 3 this is an overdetermined problem :
(
n+1

2

)
versus 2n.
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Examples: 2 × 2 case

Define a (homogeneous) map:
ϕ : symmetric matrices → principal minors:

ϕ

((
a c
c b

)

, t

)

= [t2, ta, tb, ab− c2]

When can we go backwards? Given [w, x, y, z] is there a 2 × 2 matrix
that has these principal minors? Need to solve: (WLOG assume
t = w = 1)

x = a
y = b

z = ab− c2 ⇒ c = ±√
xy − z

ϕ

((
x ±√

xy − z
±√

xy − z y

)

, 1

)

= [1, x, y, z]

Conclude: Even in the n× n case, the 0 × 0, 1 × 1, and 2 × 2 minors
determine a symmetric matrix up to the signs of the off-diagonal terms.
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Examples 3 × 3:

ϕ









x11 x12 x13

x12 x22 x23

x13 x23 x33



 , t





=
[t3, t2x11, t

2x22, t(x11x22 − x2
12),

t2x33, t(x11x33 − x2
13), t(x22x33 − x2

23),
x11x22x33 + 2x12x13x23 − x11x

2
23 − x22x

2
13 − x33x

2
12]

Given [X [000],X [100],X [010],X [110],X [001],X [101],X [011],X [111]] is there
a matrix that maps to it?
Count parameters: 7 versus 8 - there must be some relation that holds!
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The First Relation
x2

12 = X100X010 −X110

x2
13 = X100X001 −X101

x2
23 = X001X010 −X011

X111 = X100X010X001 −X100x2
23 −X010x2

13 −X001x2
12 + 2x12x13x23

(X111 −X100X010X001 +X100x2
23 +X010x2

13 +X001x2
12)

2

= 4(x12x13x23)
2

(
X111 −X100X010X001 +X100(X001X010 −X011)

+X010(X100X001 −X101) +X001(X100X010 −X110)

)2

= 4(X100X010 −X110)(X100X001 −X101)(X001X010 −X011)

0 = (X111)2 + (X100)2(X011)2 + (X010)2(X101)2 + (X110)2(X001)2

+ 4X110X101X011 + 4X100X010X001X111

− 2X100X011X111 − 2X100X010X011X101 − 2X010X101X111

− 2X100X001X110X011 − 2X001X110X111 − 2X001X010X101X110
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First result

Theorem (Holtz-Sturmfels ’07)

All relations among the principal minors of a 3 × 3 matrix are
generated by ...this beautiful degree 4 homogeneous polynomial:

(X000)2(X111)2 + (X100)2(X011)2

+ (X010)2(X101)2 + (X110)2(X001)2

+ 4X000X110X101X011 + 4X100X010X001X111

− 2X000X100X011X111 − 2X100X010X011X101

− 2X000X010X101X111 − 2X100X001X110X011

− 2X000X001X110X111 − 2X001X010X101X110

-Cayley’s hyperdeterminant of format 2 × 2 × 2. Notice: It is
invariant under the action of S3 ⋉ SL(2) × SL(2) × SL(2)!
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The Variety of Principal Minors of Symmetric Matrices

The variety of principal minors of n×n symmetric matrices, Zn, is
defined by the following rational map

ϕ : P(S2
C

n ⊕ C) 99K P(C2 ⊗ · · · ⊗ C
2) = PC

2n

[A, t] 7→ [tn, tn−1∆[10...0](A), tn−1∆[010...0](A), tn−2∆[110...,0](A),

tn−1∆[0010...0](A), tn−2∆[1010...0](A), tn−2∆[0110...0](A),

. . . . . . ,∆[1...1](A)]

where ∆[I](A) is the principal minor of A with rows indicated by I.

Q: Given a vector v of length 2n, how can you tell whether or not
it arose in this way?

A: test whether v satisfies all the relations in I(Zn).
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Hidden Symmetry

Theorem (Landsberg,Holtz-Sturmfels)

Zn is invariant under the action of G = Sn⋉SL(2)×n.

Fact: A variety X ⊂ P
N is a G-variety ⇔ the ideal I(X) is a

G-module.

Zn is a subvariety of P(V1 ⊗ · · · ⊗ Vn), where each Vi ≃ C
2.

KEY POINT: We must study I(Zn) ⊂ Sym(V ∗
1 ⊗ · · · ⊗ V ∗

n ) as a
G-module!

Mantra: “Each irreducible module is either in or out!”
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Slight Detour: A Geometric Proof of Symmetry

For non-degenerate ω ∈ ∧2
C

n, the Lagrangian Grassmannian is
Grω(n, 2n) = {E ∈ Gr(n, 2n) | ω(v,w) = 0 ∀v,w ∈ E}.
Grω(n, 2n) is a homogeneous variety for Sp(2n).

Grω(n, 2n) is the image of the rational map:

ψ : P(S2
C

n ⊕ C) 99K PΓn ≃ P
(2n

n
)−( 2n

n−2)−1

{symmetric matrix} 7→ {vector of all nonredundant minors}

The connection: Zn is a linear projection of Grω(n, 2n).

Can use this projection to find the symmetry group of Zn as a
subgroup of Sp(2n).

Try to find projections of homogeneous varieties to study other
G-varieties.

Luke Oeding (Firenze) Geometry and Principal Minors October 22, 2009 10 / 22



Multilinear Algebra

Sd(V ∗
1 ⊗ · · · ⊗ V ∗

n ) = homogeneous degree d polynomials on 2n

variables. It is a module for G = SL(V1) × · · · × SL(Vn)

If we choose a basis {x0
i , x

1
i } of V ∗

i ≃ C
2 for each i, then

V ∗
1 ⊗ · · · ⊗ V ∗

n has the induced basis xǫ1
1 ⊗ · · · ⊗ xǫn

n =: XI .

Then G acts on V ∗
1 ⊗ · · · ⊗ V ∗

n by change of basis in each factor: If
g = (g1, . . . , gn) ∈ G, then

g.XI = (g1.x
ǫ1
1 ) ⊗ · · · ⊗ (gn.x

ǫn

n ),

and acts on Sd(V ∗
1 ⊗ · · · ⊗ V ∗

n ) by the induced action:

g.(XIXJ . . . XK) = (g.XI)(g.XJ ) . . . (g.XK)

We have defined the action on a basis of each module, so we can
just extend by linearity to get the action on the whole module.
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Representation Theory

Want to study Id(Zn) ⊂ Sd(V ∗
1 ⊗ · · · ⊗ V ∗

n ).

Each irreducible Sn ⋉ SL(2)×n-module in Sd(V ∗
1 ⊗ · · · ⊗ V ∗

n ) is
isomorphic to one indexed by partitions πi of d of the form :

Sπ1Sπ2 . . . Sπn
:=

⊕

σ∈Sn

Sπσ(1)
V ∗

1 ⊗ Sπσ(2)
V ∗

2 ⊗ · · · ⊗ Sπσ(n)
V ∗

n

Can use the combinatorial information π1, . . . , πn to construct the
module.

If M is an irreducible G-module, then M = {G.v}, some vector v -
use this as often as possible.

This gives a finite list of vectors to test for ideal membership!

Also gives a way to produce many polynomials in I(Zn) from one
polynomial.
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An Example

The module S(2,2)V ⊂ V ⊗4 is one dimensional, and every vector is a
scalar multiple of

h = 2X0011 −X1001 −X1010 −X0101 −X0110 + 2X1100

To find a polynomial in S(2,2)V1 ⊗ S(2,2)V2 ⊗ S(2,2)V3, we need to

compute h⊗ h⊗ h in V ⊗4
1 ⊗ V ⊗4

2 ⊗ V ⊗4
3 , but we want a polynomial in

S4(V1 ⊗ V2 ⊗ V3), so we just permute

V ⊗4
1 ⊗ V ⊗4

2 ⊗ V ⊗4
3 → (V1 ⊗ V2 ⊗ V3)

⊗4

and symmetrize

(V1 ⊗ V2 ⊗ V3)
⊗4 → S4(V1 ⊗ V2 ⊗ V3)
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An Example

Finally, we get the result

(X000)2(X111)2 + (X100)2(X011)2

+ (X010)2(X101)2 + (X110)2(X001)2

+ 4X000X110X101X011 + 4X100X010X001X111

− 2X000X100X011X111 − 2X100X010X011X101

− 2X000X010X101X111 − 2X100X001X110X011

− 2X000X001X110X111 − 2X001X010X101X110

In fact, this is Cayley’s hyperdeterminant of format 2 × 2 × 2 !
It’s an irreducible degree 4 polynomial on 8 variables.
It is invariant under the action of S3 ⋉ SL(2) × SL(2) × SL(2).
It generates the module S(2,2)S(2,2)S(2,2).
It is the single equation defining the hypersurface Z3.
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Rephrasing of Previous Results

Theorem (Holtz-Sturmfels)

I(Z3) is generated in degree 4 by S(2,2)S(2,2)S(2,2) (Cayley’s
Hyperdeterminant of format 2 × 2 × 2).

Theorem (H-S)

I(Z4) is generated in degree 4 by S(4)S(2,2)S(2,2)S(2,2) (A
hyperdeterminantal module).

Remark: S(4)S(2,2)S(2,2)S(2,2) is the span of the G-orbit of the 2 × 2 × 2

hyperdeterminant on the variables X [∗∗∗0].

Conjecture (H-S)

I(Zn) is generated in degree 4 by S(4) . . . S(4)S(2,2)S(2,2)S(2,2) (the
hyperdeterminantal module).
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A Limit of the Computer’s Usefulness

For n = 3: A single irreducible degree 4 polynomial on 8 variables
cuts out the irreducible hypersurface in P

7.

For n = 4: 20 degree 4 polynomials on 16 variables.
Macaulay2 ⇒ the ideal is prime and has the correct dimension.
But Z4 is an irreducible variety + some facts from comm. alg. ⇒
done.

For n = 5: 250 degree 4 polynomials on 32 variables. Sadly, the
computer has not yet told me whether or not this ideal is prime.

For n = 6: 2500 degree 4 polynomials on 64 variables. :-(

For n = n:
(
n
3

)
5n−3 degree 4 polynomials on 2n variables. What

can we say in general without the computer?
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New Results

Theorem (-)

Let HD := {Sn ⋉ SL(2)×n.hyp123} = S(4) . . . S(4)S(2,2)S(2,2)S(2,2). The
variety Zn is cut out set theoretically by the hyperdeterminantal module.

V(HD) = Zn.

To prove that Zn ⊂ V(HD), show that hyp, a highest weight
vector for the irreducible module M , vanishes on every point of
Zn. Follows from 3 × 3 case.

To prove that Zn ⊃ V(HD), a more geometric understanding of
the zero set, V(HD), is needed.

Luke Oeding (Firenze) Geometry and Principal Minors October 22, 2009 17 / 22



Outline of proof of main theorem

Want to show V(HD) ⊂ Zn - do induction on n.

Give a geometric characterization of V(HD).

Attempt to construct a matrix A ∈ S2
C

n that maps to
z ∈ V(HD).

Identify possible obstructions as G-modules.

Identify the space of obstructions geometrically.

Show V(HD) also contains the space of obstructions.
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Applications outside of geometry

Spectral graph theory.

Probability theory - covariance of random variables.

Statistical physics - determinantal point processes.

Matrix theory - P -matrices, GKK-τ matrices.
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Spectral Graph Theory

Let Γ be a graph with

vertex set Q0 = {v1, . . . , vn}
edge set Q1 = {ei,j | −−→vivj ∈ Γ}.

The graph Laplacian of an undirected graph is a matrix

∆(Γ)i,j =







−1 if i 6= j and ei,j ∈ Q1

0 if i 6= j and ei,j /∈ Q1

deg(vi) if i = j

The principal minors of ∆(Γ) are invariants of the graph, in fact:

Theorem (Kirchoff’s Matrix-Tree theorem (∼1850’s))

Any (n− 1) × (n− 1) principal minor of ∆(Γ) counts the number of
spanning trees of Γ.
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Spectral Graph Theory

There are many generalizations of the Matrix-Tree Theorem, such as

Theorem (Matrix-Forest Theorem)

∆(Γ)SS = number of spanning forests of Γ rooted at vertices indexed by
S, where ∆(Γ)SS is the principal minor of ∆(Γ) indexed by S.

The ∆(Γ)SS are graph invariants. The relations among principal minors
are then also relations among these graph invariants.

Corollary (Corollary to Main Theorem)

There exists an undirected weighted graph Γ with invariants [v] ∈ P
2n−1

specified by the principal minors of a symmetric matrix ∆wt(Γ) if and
only if [v] is a zero of all the polynomials in the hyperdeterminantal
module.
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Concluding Remarks

This problem shows how representation theory and geometry can
be used to prove exciting new results.

We resolved the set theoretic version of the Holtz-Sturmfels
conjecture, but more work needs to be done in order to prove the
ideal theoretic version.

Thank you for attending! Special thanks to my thesis advisor,
J.M. Landsberg.
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Characterizing the zero set of V(HD) via augmentation

Notice that HDn = S(4) . . . S(4)
︸ ︷︷ ︸

n−3

S(2,2)S(2,2)S(2,2) and

HDn+1 = S(4) . . . S(4)
︸ ︷︷ ︸

n−2

S(2,2)S(2,2)S(2,2) is still degree 4.

What can we say about zero set of an augmented ideal
V(Id(X) ⊗ SdV ∗) based on V(Id(X))?

Lemma (inspired by Landsberg-Manivel lemma regarding
prolongation)

Let X ⊂ PW and let X̃ = V(Id(X)) (notation).

V(Id(X) ⊗ SdV ∗) = Seg(X̃ × PV ) ∪
⋃

L⊂X̃

P(L⊗ V ),

where L ⊂ X̃ are linear subspaces.

Luke Oeding (Firenze) Geometry and Principal Minors October 22, 2009 16 / 22



What does this buy us?

Consequence

Assume that HD =
⊕

iHDî ⊗ SdVi ⊂ Sd(V1 ⊗ · · · ⊗ Vn) and Vi ≃ C
2,

then

V(HD) = ∩n
i=1




⋃

L⊂V (HD
î
)

P(L⊗ Vi)



 .

Suppose z ∈ V(HD) = V(
⊕

iHDî ⊗ SdVi), and assume for
induction that V(HDî) ≃ Zn−1.

Then our geometric realization gives n different expressions for z,

z = ϕ([A(i), t(i)]) ⊗ x0
i + ϕ([B(i), s(i)]) ⊗ x1

i , (no summation)

where A(i), B(i) are n− 1 × n− 1 symmetric matrices, and
{x0

i , x
1
i } = Vi.

If we can use this information to build an n× n matrix A so that
ϕ([A, t]) = z, we will have proved the theorem.
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Building a matrix

We have n expressions

z = ϕ([A(i), t(i)]) ⊗ x0
i + ϕ([B(i), s(i)]) ⊗ x1

i ,

and the term ϕ([A(1), t(1)]) ⊗ x0
1 can be thought of as the principal

minors (not involving the first row and column) of the matrix

A(−→x1) =









x1,1 x1,2 x1,3 . . . x1,n

x1,2 a
(1)
1,2 a

(1)
2,2 . . . a

(1)
2,n

...
...

...

x1,n a
(1)
1,n a

(1)
2,n . . . a

(1)
n,n









,

where x1,i are variables, and the entries of A(1) = (a
(1)
i,j ), are fixed.

The other expressions ϕ([A(i), t(i)]) ⊗ x0
i have a similar interpretation.
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Building a matrix

The 1 × 1 principal minors determine the diagonal entries and the
2 × 2 principal minors are all of the form ai,iaj,j − a2

i,j the 2 × 2
principal minors determine the off diagonal entries up to sign.

We know that the principal minors ∆I(A(−→xi)) and ∆I(A(−→xj))
agree whenever i, j /∈ I.

Our question comes down to whether we can make consistent
choices so that the matrices A(−→xi ) agree.

It suffices to prove that if we fix A(1), that we can choose −→x1 and
A(i) so that all of the principal minors agree where the matrices
overlap.
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Construct A(−→xi)
(j), by deleting the jth row and column.

By induction, it suffices to consider

A(x1,2) =











a1,1 x1,2 a1,3 . . . a1,n

x1,2 a2,2 . . . . . . a2,n

a1,3
...

. . .
...

...
...

. . .
...

a1,n a2,n . . . an,n











,

and show that we can pick x1,2 so that all of the principal minors
of A(−→xi )

(j) agree.

We will have only determined that the matrix A(x1,2) has all the
correct principal minors (matching our point z ∈ V(HD)) except
possibly the determinant.

Luke Oeding (Firenze) Geometry and Principal Minors October 22, 2009 20 / 22



Almost...

Lemma (The Almost Lemma, n ≥ 4. )

Suppose [z] = [zIX
I ] ∈ V(HD), and [vA] = [vA,IX

I ] = [ϕ([A, t])] ∈ Zn

are such that zI = vA,I for all I 6= [1, . . . , 1]. If z[1,...,1] 6= vA,[1,...,1], then

[z] ∈
⋃

|Is| ≤ 2
1 ≤ s ≤ m

(
Seg

(
PVI1 × · · · × PVIm

))
⊂ Zn.

We have essentially made a reduction to a problem in a single variable.
Once the obstructions to solving this problem are identified as a
G-module, the proof of this lemma is an application of the geometric
characterization above.
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Almost...but what does this buy me?

The lemma says that Seg
(
PVI1 × · · · × PVIm

)
⊂ Zn.

In fact, every point in Seg
(
PVI1 × · · · × PVIm

)
⊂ Zn comes from a

block diagonal matrix with only 1 × 1 and 2 × 2 blocks.

Such a matrix is a special case of a symmetric tri-diagonal matrix,
and it’s a fact that none of its principal minors depend on the sign
of the off diagonal terms.

We use this fact iteratively in our induction for the proof of the
final lemma.
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