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Applications

Applications of Secant Varieties (Highlights)

Secant varieties are classical objects in Algebraic Geometry, but have
shown up naturally in applications such as:

Algebraic Complexity Theory:
Bounding the complexity of algorithms via membership (or
non-membership) in a given secant variety.

Signal Processing:
Determining the decomposition of tensors into sums of simpler
tensors is important for blind identification of under-determined
mixtures, a broadly used concept in applications.

Algebraic Statistics
Finding invariants of statistical models for evolution (phylogenetics).
The salmon prize and a ubiquitous example for this talk.
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Applications Algebraic Complexity Theory

Complexity of Matrix Multiplication

Let A = C
n2

, B = C
n2

, and C = C
n2

be spaces of matrices.
Then we can express matrix multiplication as a bilinear map

φ : A × B → C or equivalently as a tensor φ ∈ A ⊗ B ⊗ C ∗

Have φ =
∑r

k=1 ak ⊗ bk ⊗ γk , where r = # of multiplications in this
expression of φ. The minimum such r is the rank of φ.
The min r so that φ ∈ S r

(

Seg(PA × PB × PC ∗)
)

is the border rank of φ.

Theorem (Lickteig)

For all n 6= 3,

dimS r−1(Seg(Pn−1 × P
n−1 × P

n−1)) = min{r(3n − 2) − 2, n3 − 1}

Theorem (Strassen)

S3(Seg(P2 × P
2 × P

2)) is a degree 9 hypersurface.
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Applications Algebraic Complexity Theory

Complexity of Matrix Multiplication

Theorem (Lickteig)

The border rank of n × n matrix multiplication is no smaller than
3n2

2 + n
2 − 1.

Theorem (Bläser)

The rank of n × n matrix multiplication is no smaller than 5n2

2 − 3n.

For n = 2 Lansberg showed that the border rank is 7. For n = 3, the rank
is between 19 and 23, whereas the border rank is between 14 and 21.

Open question: Find better bounds on the rank and border rank of φ.

One approach is to study secant varieties and related auxiliary varieties to
gain information about φ.
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Applications Signal Processing

Symmetric Tensor Decomposition

Let V be a complex vector space. Symd(V ) = symmetric tensors. Rank-1
symmetric tensors = Veronese:

vd : PV → P(Symd(V ))

[v ] 7→ [v ⊗ v ⊗ · · · ⊗ v ]

The symmetric rank of a tensor A ∈ Symd(V ) is the minimum r such that
A =

∑r
k=1 vk ⊗ · · · ⊗ vk , with vk ∈ V .

However, the rank of A is the minimum r such that
A =

∑r
k=1 vk

1 ⊗ · · · ⊗ vk
d , where the vk

i can all be different vectors in V .

Open Question: (P. Comon) Is the symmetric rank of a symmetric tensor
equal to its rank?

Geometric version for border rank:
P(SymdV )∩Sk(Seg(PV ×. . . PV )) =? Sk(P(SymdV )∩Seg(PV ×. . . PV ))
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Applications Phylogenetics

The salmon Prize

In 2007, E. Allman offered a prize of Alaskan salmon (!) to whomever
finds the defining ideal of

S3
(

P
3 × P

3 × P
3
)

.

This algebraic variety may be viewed as a statistical model for evolution.

•

• • •

ancestor

extant1 extant2 extant3

Possible observed values for DNA: {A,C ,G ,T}. Assume observations at
extant species are independent. Ancestor unknown. Mixture model of 4
independence models.
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Applications Phylogenetics

Secant varieties as statistical models

Let A ⊗ B ⊗ C denote the tensor product of C-vector spaces A,B ,C .

Segre variety (rank 1 tensors): (Independence model) Defined by

Seg : PA × PB × PC −→ P
(

A ⊗ B ⊗ C
)

([a], [b], [c]) 7−→ [a ⊗ b ⊗ c].

The r-secant variety of a variety X ⊂ P
n: (Mixture model)

S r
(

Seg(PA × PB × PC )
)

(*Can also work over R or ∆-probability simplex, but not today.)
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Applications Phylogenetics

Motivation

Invariants of this statistical model ↔ ideal of the algebraic variety.

The main motivation: Work of Allman-Rhodes implies that solving this
problem would provide all invariants for the mixture model of any binary
evolutionary tree with any number of states!

Plan: Use Geometry and Representation theory to find equations of secant
varieties via this somewhat fishy example.
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Symmetry and Representation Theory

Symmetry of the salmon variety

The symmetry group of the salmon variety

S3
(

PA × PB × PC
)

is change of coordinates in each factor, i.e. GL(A) × GL(B)× GL(C )

(or GL(A) × GL(B) × GL(C ) ⋊ S3 when A ∼= B ∼= C ).

Good news: A large group acts! Can use tools from representation
theory!

This symmetry is a powerful tool (kind of like a RADAR device for
finding hidden fish) we should exploit it!
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Symmetry and Representation Theory Ideals and Modules

Ideals with Symmetry

Recall: projective varieties have homogeneous ideals. This symmetry
induces grading by degree.

C[x0, . . . , xN ] =
⊕

d

C[x0, . . . , xN ]d

∪ ∪

I(X ) =
⊕

d

Id(X )

When a larger group G acts on X (and on I(X )), we get a finer
decomposition of I(X ) into G -modules using representation theory. E.g.
can get a grading by multi-degree, and even more.

This is good because
Ideal Mantra: “Polynomials in G -modules are like musketeers - one for all
and all for one!”
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Symmetry and Representation Theory Ideals and Modules

What is an irreducible module?

Think: A G -module is a vector space with a G -action

An irreducible module is one with no proper nontrivial submodules.
Example: The space of square matrices V ⊗ V is not an irreducible GL(V )
module since it splits as

V ⊗ V = S2V ⊕
∧2V

(You already knew this: every square matrix may be written as a sum of a
symmetric and a skew symmetric matrix)
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Symmetry and Representation Theory Ideals and Modules

Representation Theory Notation

Module notation: Sd(A ⊗ B ⊗ C ) = C[pijk ]d .

Fact: Sd(A ⊗ B ⊗ C ) is a GL(A) × GL(B) × GL(C )-module.

The irreducible submodules of Sd(A ⊗ B ⊗ C ) are isomorphic to
Schur modules indexed by certain partitions π1, π2, π3 of d :

Sπ1A ⊗ Sπ2B ⊗ Sπ3C ,

and usually occur with multiplicity - this makes us work harder.

Given π1, π2, π3 and the multiplicity, there is a combinatorial
algorithm for constructing polynomials!
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Symmetry and Representation Theory Ideals and Modules

Using Representation Theory

For the groups we encounter, irreducible G -modules M satisfy

span{G .f } = M for 0 6= f ∈ M

In practice, use a distinguished f called a “highest weight vector”.

Can test if an irreducible M ⊂ I(X ) by testing if f ∈ I(X )!

If we have f ∈ I(X ), can find entire modules in I(X )!

Fact: isotypic decomposition of Sd(A ⊗ B ⊗ C ):

Sd(A ⊗ B ⊗ C ) =
⊕

|π|=d

(

Sπ1A ⊗ Sπ2B ⊗ Sπ3C
)⊕Mπ1,π2,π3 ,

where the multiplicity Mπ1,π2,π3 can be computed via characters.
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Flattenings

What is a flattening?

Think: U ⊗ V = space of matrices.

3 canonical ways to express a tensor T =
∑

i ,j ,k

pijkai ⊗ bj ⊗ ck ∈ A⊗B ⊗C

as a matrix:
T =

∑

i

ai ⊗ (
∑

j ,k

pijkbj ⊗ ck) ∈ A ⊗ (B ⊗ C ) or

T =
∑

j

bj ⊗ (
∑

i ,k

pijkai ⊗ ck) ∈ B ⊗ (A ⊗ C ) or

T =
∑

k

(
∑

i ,j

pijkai ⊗ bj ) ⊗ ck ∈ (A ⊗ B)⊗ C .

An example flattening of T = [pijk ] ∈ C
3 ⊗ C

3 ⊗ C
3 to

C
3 ⊗ (C3 ⊗ C

3) ∼= C
3 ⊗ C

9:




p111 p121 p131 | p112 p122 p132 | p113 p123 p133

p211 p221 p231 | p212 p222 p232 | p213 p223 p233

p311 p321 p331 | p312 p322 p332 | p313 p323 p333
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Flattenings

A familiar G -module

The GL(A) × GL(B) × GL(C )-module of 3 × 3 minors of the flattening
A ⊗ B ⊗ C → A ⊗ (B ⊗ C ) is

F := S(1,1,1)A ⊗ S(1,1,1)(B ⊗ C ) =
∧3A ⊗

∧3(B ⊗ C )

This module is not irreducible: F = F1 ⊕ F2 ⊕ F3 =

(
∧3A⊗

∧3B ⊗ S3C
)

⊕
(
∧3A⊗ S(2,1)B ⊗ S(2,1)C

)

⊕
(
∧3A⊗ S3B ⊗

∧3C
)

After choosing ordered (or weighted) bases of A,B ,C , can define a highest
weight. For example, the highest weight vector of

∧3A ⊗
∧3B ⊗ S3C is

(a1 ∧ a2 ∧ a3) ⊗ (b1 ∧ b2 ∧ b3) ⊗ (c⊗3
1 ) = det





p111 p121 p131

p211 p221 p231

p311 p321 p331





Can do ideal membership test for each irreducible module by testing
vanishing of its highest weight vector!

Luke Oeding (Texas A&M) Equations and Applications July 21, 2009 15 / 26



Flattenings

Symmetric Flattenings

Consider φ ∈ SymdV as a symmetric multilinear form: eats d vectors
(symmetrically) and spits out a number.

If we only feed φ s vectors, it still wants to eat d − s more. So we can
construct a linear map

φs,d−s : Syms(V ∗) →Symd−sV

[v1, . . . , vs ] 7→φ(v1, . . . , vs , ·, . . . , ·)

Macaulay (1916) showed that the border rank of φ is at least as big as the
rank of φs,d−s for all 1 ≤ s ≤ d .
The minors of φs,d−s are called minors of Catalecticant matrices or minors
of symmetric flattenings.
These give some equations for the secant varieties to Veronese varieties.
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Flattenings

Flattenings Again

A flattening is the observation that

P(A ⊗ B ⊗ C ) = P(A ⊗ (B ⊗ C ))

∪ ∪

Seg(PA × PB × PC ) ⊂ Seg(PA × P(B ⊗ C ))

A symmetric flattening is the observation that

P(SymdV ) ⊂ P
(

SymsV ⊗ Symd−sV
)

∪ ∪

vd(PV ) ⊂ Seg(vs(PV )× vd−s(PV ))

In both cases, minors of the matrices gotten by flattening give some
equations for the secant varieties.
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Geometric Techniques

Highlights: Flattenings and subspace varieties

Definition:
Subp,q,r (A ⊗ B ⊗ C ) :=

{

[T ] ∈ P(A ⊗ B ⊗ C ) | ∃C
p ⊆ A,

C
q ⊆ B , Cr ⊆ C , and [T ] ∈ P(Cp ⊗ C

q ⊗ C
r )

}

i.e. Tensors that can be written using fewer variables.

Theorem ( 3.1, Landsberg–Weyman ’07)

Subp,q,r(A ⊗ B ⊗ C ) is normal with rational singularities. Its ideal is
generated by the minors of flattenings;

(

∧p+1A ⊗
∧p+1(B ⊗ C )

)

⊕
(

∧q+1B ⊗
∧q+1(A ⊗ C )

)

⊕
(

∧r+1(A ⊗ B) ⊗
∧r+1C

)

Fact: Subr ,r ,r (A ⊗ B ⊗ C ) ⊇ S r−1(PA × PB × PC )

Key Point: The subspace varieties contain secant varieties, and therefore
they give some of the equations of the secant varieties.
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Geometric Techniques

Flattenings and the Segre variety

Note, the ideal of Seg(PV1 × · · · × PVn) is generated by all 2 × 2 minors
of flattenings. Garcia, Stillman and Sturmfels conjectured that the ideal of
the secant variety should be generated by the 3 × 3 minors of flattenings.

Theorem (Landsberg-Manivel)

S(Seg(PV1 × · · · × PVn)) is cut out (set theoretically for all n and ideal
theoretically for n = 3 ) by the 3 × 3 minors of flattenings.

However, S3(Seg(P2 × P
2 × P

3)) is an example of a secant variety which
does not have any equations coming from flattenings since there are no
5 × 5 minors of 3 × 12 or 9 × 4 matrices.
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Geometric Techniques

Highlights: Inheritance via an example

Proposition (example of Proposition 4.4 Landsberg–Manivel , ’04)

M̃6 := S(2,2,2)C
4 ⊗ S(2,2,2)C

4 ⊗ S(3,1,1,1)C
4 ∈ I

(

S3(P3 × P
3 × P

3)
)

if and only if

M6 := S(2,2,2)C
3 ⊗ S(2,2,2)C

3 ⊗ S(3,1,1,1)C
4 ∈ I

(

S3(P2 × P
2 × P

3)
)

.

Note: dim(M̃6) = 103 but dim(M6) = 10, and has basis of polynomials,
each with 576 or 936 monomials.

The point: The number of parts of π1, π2, π3 tell us which secant variety
to look at. This is a significant dimension reduction.

For S3(P3 × P
3 × P

3) we only need to consider Sπ1A⊗ Sπ2B ⊗ Sπ3C where
π1, π2, π3 have 4 parts, and those equations we get from inheritance.

Luke Oeding (Texas A&M) Equations and Applications July 21, 2009 20 / 26



Geometric Techniques

Highlights: Inheritance (full details)

Proposition (4.4 Landsberg–Manivel , ’04)

If an irreducible module

Sπ1A ⊗ Sπ2B ⊗ Sπ3C ⊂ Id(S r−1(PA × PB × PC ))

then for all vector spaces A′ ⊇ A,B ′ ⊇ B ,C ′ ⊇ C we have

Sπ1A
′ ⊗ Sπ2B

′ ⊗ Sπ3C
′ ⊂ Id(S r−1(PA′ × PB ′ × PC ′)).

Moreover, a module Sπ1A
′ ⊗ Sπ2B

′ ⊗ Sπ3C
′ where l(π1) ≤ a, l(π2) ≤ b

l(π3) ≤ c is in Id(S r−1(PA′ × PB ′ × PC ′)) iff the corresponding module is
in Id(S r−1(PA × PB × PC )).
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Previous Results

Landsberg and Manivel’s Reduction

Theorem (Landsberg-Manivel ’08 Corollary 5.6)

S3
(

P
3 × P

3 × P
3
)

is the zero set of:

1 M5 :=
(

S(3,1,1)C
4 ⊗ S(2,1,1,1)C

4 ⊗ S(2,1,1,1)C
4
)

⊕
(

S(2,1,1,1)C
4 ⊗ S(3,1,1)C

4 ⊗ S(2,1,1,1)C
4
)

⊕
(

S(2,1,1,1)C
4 ⊗ S(2,1,1,1)C

4 ⊗ S(3,1,1)C
4
)

2 Equations inherited from S3
(

P
2 × P

2 × P
3
)

Key point: It remains to find the equations of S3(P2 × P
2 × P

3)!

In fact, S3(P2 × P
2 × P

3) is the smallest secant variety to a Segre
product whose equations are unknown!

Note: M5 is a 1728 dimensional irreducible G -module, for
G = GL(4) × GL(4) × GL(4) ×S3 with a natural basis of polynomials
with 180 or 360 or 540 monomials.
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Previous Results

A result of Strassen

Theorem (Strassen 1988 (reinterpreted))

The ideal of the hypersurface S3(P2 × P
2 × P

2) ⊂ P
26 is generated in

degree 9 by a nonzero vector in the 1 dimensional module

S(3,3,3)C
3 ⊗ S(3,3,3)C

3 ⊗ S(3,3,3)C
3

Since S3(P2 × P
2 × P

2) ⊂ S3(P2 × P
2 × P

3), inheritance implies that
M9 := S(3,3,3)C

3 ⊗ S(3,3,3)C
3 ⊗ S(3,3,3)C

4 ⊂ I(S3(P2 × P
2 × P

3))

Note: Strassen’s polynomial only has 9, 216 monomials, and
dim(M9) = 20, has natural basis of polynomials with 9, 216 or 25, 488 or
43, 668 monomials! It is a 56 Mb file of polynomials... :-(
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Current status

What is known about I
(

S3
(

P2 × P2 × P3
))

?

General theory: Is(S
k−1(PA × PB × PC )) = 0 for s ≤ k.

Computational tests: (Please download my Maple code and double check

this work! )

I5

(

S3
(

P
2 × P

2 × P
3
))

= 0

M6 := I6

(

S3
(

P
2 × P

2 × P
3
))

= S(2,2,2)C
3⊗S(2,2,2)C

3⊗S(3,1,1,1)C
4 ∗

Strassen:
M9 := S(3,3,3)C

3 ⊗ S(3,3,3)C
3 ⊗ S(3,3,3)C

4 ∈ I(S3(P2 × P
2 × P

3))

Do M6 and M9 suffice to cut out S3
(

P
2 × P

2 × P
3
)

?

∗(correction)
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Current status

Status of the salmon conjecture

Known equations of S3
(

P
2 × P

2 × P
3
)

:

M6 = S(2,2,2)C
3 ⊗ S(2,2,2)C

3 ⊗ S(3,1,1,1)C
4

M9 = S(3,3,3)C
3 ⊗ S(3,3,3)C

3 ⊗ S(3,3,3)C
4

Shape of partitions implies that 〈M9〉 6⊂ 〈M6〉.

It is known that V(M6) = S3
(

P
2 × P

2 × P
3
)

∪ Sub3,3,3 ∪ X , where X is
the “left-over” part of the zero-set.

Also, we know that x ∈ V(M9) ∩ Sub3,3,3 ⇒ x is in some
S3

(

P
2 × P

2 × P
2
)

⊂ S3
(

P
2 × P

2 × P
3
)

.

Does V(M6 + M9) eliminate the “left-overs” X? If so, this would resolve
the salmon problem (at least set theoretically)... work in progress.
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A template

A template for finding equations of varieties coming from

applications

The salmon variety has been studied via the following:
1 Input: statistical model, space of special tensors, etc.
2 Find the corresponding algebraic variety X .
3 Find the largest symmetry group G acting X .
4 Study I(X ) as a G -module using representation theory.
5 Use computational tools to study modules potentially in I(X ).

(works well for low degree) - See me for Maple implementations.
Note: Representation theory tells where to look for invariants as well
as how to get new invariants from old.

6 Try to make geometric reductions to show that the known invariants
suffice.

This template should be useful for studying other varieties coming from
applications since they often have nice symmetry as we have observed in
this example.
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