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Tensors, Rank, and Identifiability

o A tensor of format (n1,ns,...,nq) is a hypermatrix T = (74, 4s,....in)
(assume entries in C), with 1 <1i; < n; for all j.

e Since T has H?:l n; entries, it represents a huge set of data.

@ Basic question: Find a sparse representation of 7.

e A rank-one tensor (a point on a Segre variety) is a tensor T such that
Tiv,...ig = V1,41 " V2, * V4,4, for some vectors ¥; of lengths n;.

Rank-one tensors only have essentially Z?Zl n; pieces of information.

yeen

e A rank-r tensor (a general point on the r-th secant variety of the Segre
variety) is the sum of r rank-one tensors.

A rank-r tensor only contains essentially 7 - 2?21 n; pieces of information,
which is potentially much smaller than the full dimension H?=1 n;.

@ So a low-rank representation of 7 is a sparse presentation.
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Some Applications of Secant Varieties

e Classical Algebraic Geometry: When can a given projective variety
X C P” be isomorphically projected into P?~1?

Determined by the dimension of the secant variety oqo(X).

@ Algebraic Complexity Theory: Bound the border rank of algorithms via
equations of secant varieties. Berkeley-Simons program Fall’14

e Algebraic Statistics and Phylogenetics:
Given contingency tables for DNA of several species, determine the
correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

e Signal Processing: Blind identification of under-determined mixtures,
analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user’s signal.

e Computer Vision, Neuroscience, Quantum Information Theory,
Chemistry...
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First algebraic / geometric questions for tensors

Let X ¢ PCV, with N =nq X - -- X ng, denote the set of rank-one tensors, and
let 0,-(X) denote the Zariski closure of the set of rank-r tensors.

@ [Dimensions] What is the dimension of ¢, (X)?
— When does 0,.(X) fill the ambient PCN? (defectivity)

@ [Equations] What are the polynomial defining equations of o, (X)?

@ [Decomposition] For my favorite 7€ C¥, can you find an expression of 7
as a sum of points from X7

@ [Specific Identifiability] For a given 7 € C, does T have a unique
decomposition (ignoring trivialities)?

@ [CGeneric Identifiability] For generic T € CV, does T have a unique
decomposition (ignoring trivialities)?

Today: Focus on Generic Identifiability
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Geometric version of identifiability

Let X ¢ CV, with N =nq X --- X ng, denote the set of rank-one tensors, and
let 0,-(X) denote the Zariski closure of the set of rank-r tensors.
Construct the incidence variety

T={(TLITY .., [T"DI[T)eX,Te(T,...,T")}
I C IP’J:V x X x ... x X
or(X)

@ Projection onto the first factor: 7(Z) = o,.(X).

o Note dim(Z) = r - dim(X) — 1. If the fiber 7=1([T]) over a generic

[T] € 0,-(X) is finite, then dim(o, (X)) = dim(Z).
o If r is the smallest such that o,.(X) = PV, say that r is the generic rank.
e Moreover, #7~1([T]) is the number of decompositions of 7.

Definition

If [T] € 0,(X) is such that #n~1([T]) = r!, then we say that T is identifiable
and that the decomposition of T is essentially unique.
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Perfect identifiability for tensors

For T € CM®...C", based on dimension count, the generic rank is at least

d d
R(nl, e ,Tld) = Hi:l ni — Hi:l ng

YD)+ (S ) +1-d

e The value [R(ni,...,ng)] is called the expected generic rank.
@ A necessary condition for generically finitely many decompositions is for
R(ny,...,nq) to be an integer, a.k.a perfect format.

@ When the generic tensor of perfect format has an essentially unique
decomposition, we say that perfect identifiability holds.
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Known Results for “unbalanced formats”

Assume d >3 and 2 <nj; <ng <...<ng. IfndZH?;fni—Zf;f(ni—IL
we say that the format (nq,...,n4) is unbalanced.

Theorem (Catalisano-Geramita-Gimigliano’02,

Abo-Ottaviani-Peterson’09, Bocci-Chiantini-Ottaviani’13)

For formats (ny,...,nq), suppose that ng > HZ | = Zf f(nl —1).
Q@ The generic rank is min (nd, H?:_ll nz>

QA geneml tensor of rank v has a unique decomposition if

r < TI85) ne = 00 (i — 1).

@ A general tensor of rank r = Hf:_ll n; — Zf 11( — 1) has ezactly ( )

d—1,
different decompositions where D = %

This value of T coincides with the generic rank in the perfect case: r = ng.

Q Ifng> Hl T — foll (n; — 1), a general tensor of rank
r> Hl 1N — Zfl f(nz — 1) has infinitely many decompositions.

v
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Monodromy for Tensor Identifiability (using Bertini)
The problem:

Given 7 find rank-one tensors 7' so that 7 =)  T'.
Asks to solve a straightforward system of polynomial equations. In general,

this can be a very difficult problem.

@ One method to numerically solve large systems of polynomials is to use
homotopy continuation, in a software package like Bertini.

@ The idea is to start with a similar system G whose solutions you know
(like roots of unity). Then perform a homotopy to your system F':

t-G+(1—1t)-F t € [0,1]

and numerically track the paths traced out by the solutions of G. The
paths should end in solutions of the F'.

e generically can construct paths that avoid singularities and end points are
non-singular (real 1-dimensional path, singular locus has complex codim
1, so real codim 2.)
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Numerical Algebraic Geometry & Bertini

input: An affine variety H.
Output: degH
@ Choose a random linear space £ with dim £ = codim H.
@ Generate a point z € H N L. Initialize W := {z}.
@ Perform a random monodromy loop starting at the points in W:
(a) Pick a random loop M(t) in the grassmannian of linear spaces so that

M(0) = M(1) = L.

(b) Trace the curves H N M(t) starting at the points in W at t =0 to
compute the endpoints £ at t = 1. (Hence, € C HN L).

(c) Update W :=WUZE, sort W, remove repeats and symmetric copies.

@ Repeat (2) until #W stabilizes.
@ Use the trace test to verify that W =H N L.
@ Return degH = #H(NL).

A triangular monodromy loop for random points P; and P, in CV:

(L) NH

(L+P)NH (L+P)NH
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Monodromy for Tensor Decomposition (using Bertini)

Start: A general tensor T of format (ng,...,ng) with known minimal
decomposition, 7 = Y"\_, (vi®...Qv}).
(dehomogenize): Set (v;'-)l =lfori=1,...,rand j=1,...,d— 1.
o Input system: ‘ ‘
T (vi®...0v))

1 Ty — . =
Fr(vy,...,vg) = (vi), — 1 fori:17...7randj:1,...,d—1] 0

o The system Fr consists of H?:l nj + r(d — 1) polynomials in r - Z?:l n;
variables. Balanced format = square system.

@ Let W C (C™ x --- x C™)" be the known decompositions of T'.

e Homotopy: For a loop 7 :[0,1] — C™ "™ with 7(0) = 7(1) = T, consider
the homotopy

H(vi,...,v],s) :FT(S)(’U%,...,’UQ) =0.

e Endpoints are decompositions of 7. If new, add results to W.

e Repeat until W] stabilizes (at least 20 additional randomly selected loops
failed to yield any new decompositions), and possibly use AlphaCertify.
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Theorem (CGG’02, AOP’09, BCC’13)
For formats (nq,...,nq), suppose that ng > Hl | s = Z:f;ll(nZ —1).
@ The generic rank is min <nd, H?;ll m)
@ A general tensor of rank r has a unique decomposition if
r<ITim m = S0 (mi = 1),
@ A general tensor of rank r = Hf;ll n; — sz 11( — 1) has ezactly ( )
different decompositions where
d—

D= (n1—1)...-(nd_1—1)!'

This value of r coincides with the generic rank in the perfect case: when
r=mng.

Q Ifng> ]_[z 0 g = Zf;ll (n; — 1), a general tensor of rank

r> Hl 1 g = Z‘j:_ll(nl —1), e.g., a general tensor of format (n1,...,na4),

has infinitely many decompositions.

V.

(Auburn) Homotopy and Identifiability October 15, 2020 11 /27



Computational results: Unbalanced cases

Some known perfect cases and the number of decompositions.

(ni1,...,nq) | gen. rank | # of decomp. of general tensor
(2,m,n) n (Weierstrass-Kronecker) 1
(3,3,5) 5 6
(3,4,7) 7 120
(3,5,9) 9 5005

(3,6,11) 11 352716
(4,4,10) 10 184756
(2,2,2,5) 5 6
(2,2,3,8) 8 495

(Auburn)
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Computational results: Perfect cases, 3 factors

All perfect, balanced tensor formats of 3-tensors with Hf’:l n; < 150.

(n1,n92,n3) | gen. rank | # of decomp. of general tensor
(3,4,5) 6 1
(3,6,7) 9 38
(4,4,6) 8 62
(4,5,7) 10 > 922556

After the numerical results, we were motivated to prove the following:

Theorem (HOOS 2015)

The general tensor of format (3,4,5) has a unique decomposition as a sum of
6 decomposable summands.

Our proof relies on algebraic geometry, vector bundles and intersection theory,
and relies on a notion of non-abelian polarity.
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Computational results: Perfect cases, 4 factors
All perfect, balanced tensor formats with d > 4 and Hle n; < 100.

(n1,...,nq) | gen. rank | # of decomp. of general tensor
(2,2,2,3) 1 1
(2,2,3,4) 6 4
(2,2,4,5) 8 68
(2.3.3,4) 8 471
2,3,3,5) 9 7295
(3.3.3,3) 9 20,596

2,2,2,2,4) 8 447

(2.2,2.3,3) 9 18,854

(2,2,2,2,2,3) 12 > 238,879

Again, motivated by the numerical evidence we were able to prove:

Theorem (HOOS 2015)

The general tensor of format (2,2,2,3) has a unique decomposition as a sum
of 4 decomposable summands.

A similar proof to the (3,4,5)-case also works here.
O vy Ao



A conjecture

Conjecture (HOOS 2015)

The only perfect formats (nq,...,nq) where a general tensor has a unique
decomposition are

Q (2,k,k) for some k — matriz pencils, known classically by Kronecker
normal form,

9 (3,4,5), and
Q (2,2,2,3).

The generic rank is known to be equal to the expected one for the cubic
format (n,n,n) [Lickteig’85], which is not perfect for n > 3, and in the binary
case (2,...,2) for at least k > 5 factors [CGG’11], which is perfect if k + 1 is a
power of 2. A numerical check for k = 7 shows it is not identifiable.
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Methods: Koszul Flattenings
The Koszul complex: linear maps K,: NV — N tHy depending linearly on V.

Ky0)@) = pAvforp>0,  Kp(o)() = p(v) for p< 0.

Set Vi = /\7;1‘/i®/\i2‘/2® e ®/\id Vg, and form a tensor product of Koszul maps:
Kr: Vi = Vigqa,
that depend linearly on V(L___’l) =R -V

Lemma (Koszul Flattening)

Suppose T' € Vi, .. 1 has tensor rank r. Let i; >0 for j =1,...,h, 3; <0 for
j=h+1,...,d. The Koszul flattening K;(T): V; — V;, 14 has rank at most

rri=r- Ty (Y ey (742):

In particular, the (r; + 1) X (r; + 1) minors of K(T) vanish.
Meaningful if r; < min{dim V7, dim V7, 1a}.

Basic idea: A Koszul flattening of 7 is a matrix constructed from the entries
of T that has rank at most a multiple of the rank of 7 detect Rank(7).
Oy 15, zome | 16,20



The 3 x 4 X 5 case

Let us denote the three factors as A = C?, B = C*, C = C®. The following are

all possible non-trivial, non-redundant Koszul flattenings (up to transpose).

e usual flattenings:

o Koszul flattenings:
Ku 10 B'®@A = CoNA, Kuo_1y: C*0A— BaNA,

K1, 1): C*"®B = AeNB, K110 A*®B - CaNB,
K(—I,O,l): A*'RC — B®/\QC y K(O K B*®C — A(X)/\ZC ,

K(fl,O,Z): A*®/\2C — B®A3C s K(O,fl,2): B*®/\2C — A®A3C .

(Auburn)

K(O,—l,—l): (B®C)* — A s
K(_1,07_1)Z (A@C)* — B s
K(,l’,l’o)l (A®B)* — C ,
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An example Koszul flattening

Ko1,-1): C*®B — A9N'B
Ky 1,—1(a®b®c) has image

(NAAa)@(NBAD)RC*(c)) ¢ NANBoNC.

The factor C*(c) is just a scalar that is obtained by contracting ¢ with C*.
We are left with (A’A A a) = (a) tensored with (A'B Ab) € N'B,
but (A B A b) = (B/b)@(b), which is 3 dimensional.

So Ko,1,—1(7T) has rank that is at most 3 times the rank of 7. And since it is
18 x 20, it has a chance to detect up to rank 6 tensors.
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max tensor rank detected

map size mult-factor
K(O,fl,fl) 3 x 20 1 3
K(—l,O,—l) 4x15 1 4
K(,l’,l’o) 5 x 12 1 5}
K(l,—l,O) 15 x 12 2 6
K(l,O,fl) 12 x 15 2 6
K(0717_1) 18 x 20 3 6
K(,l’l’o) 12 x 30 3 4
K(—l,O,l) 40 x 15 4 4
K(O,—l,l) 30 x 20 4 5
K(—1,0,2) 40 x 30 6 5
K(O,—I,Z) 30 x 40 6 5
K(07_172) 30 x 40 6 )

We see that the only maps that distinguish between tensor rank 5 and 6 are
K(l,—1,0)7 K(I,O,—1)7 and K(OJ,—I)' Since /\2A = A*, the first two maps are

transposes of each other:

)

Ka,—1,0 = (Ka,0,-1)"

Thus, we proceed by considering K 9,_1) and K 1,_1)-

Homotopy and Identifiability
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Methods: Apolarity
The definition of the Koszul Flattening implies

h d
T:v1®...®vdEkerKI(T)<:>®(<pj/\vj)® ® (@j(vj)):O
j=1 j=h+1

for all basis elements ¢ € V7.

Think of elements of the kernel of K;(T') as linear mappings.

Let N UP ={1,...,d} be the set partition such that —Iy € Z¢, Ip € Z‘éo.
Lemma (Non-abelian Apolarity Lemma [Landsberg-Ottaviani’13:])

Suppose T =" _, vi®...Qv5. The kernel ker K;(T) contains all maps
¢ € Hom(V_;,,V5,) such that

Y(Vorytiny A ®vjs) A (®UJS) =0

JEN JEP

fors=1,...,r.

Basic idea: the kernel of a flattening of 7 can be used to gain information
about the decomposition of 7.
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In our case the Apolarity Lemma says that

kerKl,ov_l(Zle aibic;) D {p € Hom(C,A)|p(c;) Na; =0for i =1,...,s}.
and

ker Ko 1,-1(3 i, abic;) D {¢o € Hom(C,B)|p(c;) ANb; =0fori=1,...,s}.

Equality should hold for honest decompositions.

Basic result from Oeding-Ottaviani [0O’13] and Landsberg-Ottaviani [LO’11]:
The set of eigenvectors of a general element in ker(K(7)) (interpreted as the

common base locus of general sections of a certain vector bundle) contains
the set of (pieces of) rank-one summands in a decomposition of 7.
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Proof of Theorem 3-4-5: Vector Bundles

For general T € AQ B® C, K;,_1(f) is surjective and ker K7 9,_1(7") has
dimension dim Hom(C, A) —dim A’A® B=15—12 = 3.

Interpret K10, _1(7) as a map between sections of vector bundles.
Let X =P(A) x P(B) x P(C) with (pull-back) line bundle. O(a, 8,7)
Let Q4 be the pullback of the quotient bundle on P(A).

Let E = Q4 ®0(0,0,1) (arank 2 bundle on X) and L = O(1,1,1).

As in [00’13], [LO’13], the map K4,0,—1(7) can be identified with contraction
Ki0-1(T): H*(E)—H°(E* ® L)* depending linearly on T € HY(L)*.

Apolarity: compute the common base locus of the sections of the vector
bundle ker(Ky1,-2(7)) to find the decomposition of 7.
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Proof of Theorem 3-4-5: Intersection Theory I
e Have K1 9,_1(T): H°(E)—H°(E* ® L)* depending linearly on
T € HO(L)*.

o The general element in H%(E) vanishes on a codimension two subvariety
of X which has homology class c2(E) € H*(X,Z).

o The ring H*(X,Z) can be identified with Z[t,tp,tc]/(t5, th, t&).
@ The Chern polynomial of @ 4 is ﬁ, so co(E) = ti +tatc + t%.

o Three general sections of HY(FE) have common base locus given by
2(E)3 = (3 + tato +12)° = 614tL.

e This coefficient 6 coincides with the generic rank and it is the key to the
computation.
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Proof of Theorem 3-4-5: Intersection Theory II

@ A Macaulay?2 test (M2 file on arXiv) performed on a random tensor 7
gives that the common base locus of ker K9, _1(7) is given by 6 points
(ai,c;) for i =1,...,6 on the 2-factor Segre variety P(A4) x P(C).

e By semicontinuity, the common base locus of ker K o _1(7) is given by 6
points for general tensor 7. Hence, for the general tensor T, equality
holds in the Apolarity Lemma.

e In particular, the decomposition 7 = Zle a;@b;®c; has a unique
solution (up to scalar) for a;, ¢;. It follows that also the remaining vectors
b; can be recovered uniquely, by solving a linear system.
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Thanks!
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The 2 X 2 x 2 x 3 case
For this part, let A= B~ C =2 C? and D = C3. The only interesting Koszul
flattenings for tensors in AQ BRC®D are the following maps, which depend
linearly on AQ BRCRD.
The 1-flattenings (and their transposes):

K—I,O,O,O: A" — B®C®D, K07_170702 B* — A®C®D,

K070,_1702 c* — 14(83(@1)7 K070,o7_12 D* — A@B@C,

which detect a maximum of rank 2 in the first 3 cases and a maximum of rank
3 in the last.
The 2-flattenings (and their transposes):

Koo,-1,-1: C"®D" = A®B, Ko,—1,0,-1: B'®D" = A®C,
K_100,-1: A"®D" — BaC.

The maps are all 4 x 6 and detect a maximum of tensor rank 4.
The higher Koszul flattenings:

Kfl,O,O,l: A*®D — B®C®A2D, K(),,l’o’li B*®C — A®C®A2D,
K())O,,]_’ll C*®D — A®B®A2D

These maps are all 12 x 6, and detect a maximum of rank 3.
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Proof of Theorem 2-2-2-3

Suppose T' € AQBRC®D. Consider Koo —1,-1: C*®D* =+ A®B. If T is
general of rank 4, then Rank K¢ _1,_1(T) =4 and dimker Ky _1,-1(T) = 2.
Apolarity says that the points {¢*®d*®} are in the common base locus of the
elements in the kernel of K¢ 9,1 —1(T).

Consider line bundles E = 0(0,0,1,1), L = O(1,1,1,1) over Seg(PC* x PD*).
Two general sections of E have common base locus given by a cubic curve,
denoted Ce,p of bi-degree (1,2) on Seg(PC x PD). The projection to PD is a
conic, which we denote Q¢.

Repeat the process for the next 2-flattening, Ko —10—1: B*®D* = A®C,,
changing the roles of C' and B, we obtain another conic Qp in PD*.

Finally, if Q¢ and Qp are general, Bézout’s theorem implies that they
intersect in 4 points in PD, {[d"], [d?], [d®], [d*]}.

Pull back the {d;} to the curve C¢ p in Seg(PC* x PD*) and project to PC to
obtain 4 points {¢;} on PC.

Reverse the roles of B and C and repeat to find 4 points {b;} on PB.

Reverse the roles of A and B and repeat to find 4 points {a;} on PA.

The tensor products a’®b'®c'®d’ obtained in this way are, up to scale, the
indecomposable tensors in the decomposition of the original tensor T

Finally we solve an easy linear system to determine the coefficients A; in the
expression T = Y1 N’ @b @c@d".
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