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Tensors, Rank, and Identifiability

A tensor of format (n1, n2, . . . , nd) is a hypermatrix T = (Ti1,i2,...,id)
(assume entries in C), with 1 ≤ ij ≤ nj for all j.

Since T has
∏d
j=1 nj entries, it represents a huge set of data.

Basic question: Find a sparse representation of T .

A rank-one tensor (a point on a Segre variety) is a tensor T such that
Ti1,...,id = v1,j1 · v2,j2 · · · vd,jd for some vectors ~vj of lengths nj .

Rank-one tensors only have essentially
∑d
j=1 nj pieces of information.

A rank-r tensor (a general point on the r-th secant variety of the Segre
variety) is the sum of r rank-one tensors.

A rank-r tensor only contains essentially r ·
∑d
j=1 nj pieces of information,

which is potentially much smaller than the full dimension
∏d
j=1 nj .

So a low-rank representation of T is a sparse presentation.
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Some Applications of Secant Varieties
Classical Algebraic Geometry: When can a given projective variety

X ⊂ Pn be isomorphically projected into Pn−1?

Determined by the dimension of the secant variety σ2(X).

Algebraic Complexity Theory: Bound the border rank of algorithms via
equations of secant varieties. Berkeley-Simons program Fall’14

Algebraic Statistics and Phylogenetics:
Given contingency tables for DNA of several species, determine the
correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

Signal Processing: Blind identification of under-determined mixtures,
analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user’s signal.

Computer Vision, Neuroscience, Quantum Information Theory,
Chemistry...
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First algebraic / geometric questions for tensors

Let X ⊂ PCN , with N = n1 × · · · × nd, denote the set of rank-one tensors, and
let σr(X) denote the Zariski closure of the set of rank-r tensors.

1 [Dimensions] What is the dimension of σr(X)?
– When does σr(X) fill the ambient PCN? (defectivity)

2 [Equations] What are the polynomial defining equations of σr(X)?

3 [Decomposition] For my favorite T ∈ CN , can you find an expression of T
as a sum of points from X?

4 [Specific Identifiability] For a given T ∈ CN , does T have a unique
decomposition (ignoring trivialities)?

5 [Generic Identifiability] For generic T ∈ CN , does T have a unique
decomposition (ignoring trivialities)?

Today: Focus on Generic Identifiability

Oeding (Auburn) Homotopy and Identifiability October 15, 2020 4 / 27



Geometric version of identifiability
Let X ⊂ CN , with N = n1 × · · · × nd, denote the set of rank-one tensors, and
let σr(X) denote the Zariski closure of the set of rank-r tensors.
Construct the incidence variety

I := {([T ], [T 1] . . . , [T r]) | [T i] ∈ X, T ∈ 〈T 1, . . . , T r〉}

I ⊂ PN

π

��

× X × . . . × X

σr(X)

Projection onto the first factor: π(I) = σr(X).

Note dim(I) = r · dim(X̂)− 1. If the fiber π−1([T ]) over a generic
[T ] ∈ σr(X) is finite, then dim(σr(X)) = dim(I).
If r is the smallest such that σr(X) = PN , say that r is the generic rank.
Moreover, #π−1([T ]) is the number of decompositions of T .

Definition

If [T ] ∈ σr(X) is such that #π−1([T ]) = r!, then we say that T is identifiable
and that the decomposition of T is essentially unique.
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Perfect identifiability for tensors

For T ∈ Cn1⊗ . . .⊗Cnd , based on dimension count, the generic rank is at least

R(n1, . . . , nd) :=

∏d
i=1 ni∑d

i=1(ni − 1) + 1
=

∏d
i=1 ni(∑d

i=1 ni

)
+ 1− d

The value dR(n1, . . . , nd)e is called the expected generic rank.

A necessary condition for generically finitely many decompositions is for
R(n1, . . . , nd) to be an integer, a.k.a perfect format.

When the generic tensor of perfect format has an essentially unique
decomposition, we say that perfect identifiability holds.
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Known Results for “unbalanced formats”
Assume d ≥ 3 and 2 ≤ n1 ≤ n2 ≤ . . . ≤ nd. If nd ≥

∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1),

we say that the format (n1, . . . , nd) is unbalanced.

Theorem (Catalisano-Geramita-Gimigliano’02,
Abo-Ottaviani-Peterson’09, Bocci-Chiantini-Ottaviani’13)

For formats (n1, . . . , nd), suppose that nd ≥
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1).

1 The generic rank is min
(
nd,

∏d−1
i=1 ni

)
.

2 A general tensor of rank r has a unique decomposition if
r <

∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1).

3 A general tensor of rank r =
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1) has exactly

(
D
r

)
different decompositions where D =

(
∑d−1

i=1 (ni−1))!
(n1−1)!···(nd−1−1)! .

This value of r coincides with the generic rank in the perfect case: r = nd.

4 If nd >
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1), a general tensor of rank

r >
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1) has infinitely many decompositions.
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Monodromy for Tensor Identifiability (using Bertini)

The problem:

Given T find rank-one tensors T i so that T =
∑r
i=1 T i.

Asks to solve a straightforward system of polynomial equations. In general,
this can be a very difficult problem.

One method to numerically solve large systems of polynomials is to use
homotopy continuation, in a software package like Bertini.

The idea is to start with a similar system G whose solutions you know
(like roots of unity). Then perform a homotopy to your system F :

t ·G+ (1− t) · F t ∈ [0, 1]

and numerically track the paths traced out by the solutions of G. The
paths should end in solutions of the F .

generically can construct paths that avoid singularities and end points are
non-singular (real 1-dimensional path, singular locus has complex codim
1, so real codim 2.)
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Numerical Algebraic Geometry & Bertini

input: An affine variety H.
Output: degH

1 Choose a random linear space L with dimL = codimH.

2 Generate a point x ∈ H ∩ L. Initialize W := {x}.
3 Perform a random monodromy loop starting at the points in W:

(a) Pick a random loopM(t) in the grassmannian of linear spaces so that
M(0) =M(1) = L.

(b) Trace the curves H ∩M(t) starting at the points in W at t = 0 to
compute the endpoints E at t = 1. (Hence, E ⊂ H ∩ L).

(c) Update W :=W ∪ E , sort W, remove repeats and symmetric copies.

4 Repeat (2) until #W stabilizes.

5 Use the trace test to verify that W = H ∩ L.

6 Return degH = #H(∩L).

A triangular monodromy loop for random points P1 and P2 in CN :

(L) ∩H
**

(L+ P2) ∩H

44

(L+ P1) ∩Hoo
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Monodromy for Tensor Decomposition (using Bertini)

Start: A general tensor T of format (n1, . . . , nd) with known minimal
decomposition, T =

∑r
i=1(vi1⊗ . . .⊗vid).

(dehomogenize): Set (vij)1 = 1 for i = 1, . . . , r and j = 1, . . . , d− 1.

Input system:

FT (v11 , . . . , v
r
d) =

[
T −

∑r
i=1(vi1⊗ . . .⊗vid)

(vij)1 − 1 for i = 1, . . . , r and j = 1, . . . , d− 1

]
= 0

The system FT consists of
∏d
j=1 nj + r(d− 1) polynomials in r ·

∑d
j=1 nj

variables. Balanced format ⇒ square system.

Let W ⊂ (Cn1 × · · · × Cnd)r be the known decompositions of T .

Homotopy: For a loop τ : [0, 1]→ Cn1···nd with τ(0) = τ(1) = T , consider
the homotopy

H(v11 , . . . , v
r
d, s) = Fτ(s)(v

1
1 , . . . , v

r
d) = 0.

Endpoints are decompositions of T . If new, add results to W.

Repeat until |W| stabilizes (at least 20 additional randomly selected loops
failed to yield any new decompositions), and possibly use AlphaCertify.
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Theorem (CGG’02, AOP’09, BCC’13)

For formats (n1, . . . , nd), suppose that nd ≥
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1).

1 The generic rank is min
(
nd,

∏d−1
i=1 ni

)
.

2 A general tensor of rank r has a unique decomposition if
r <

∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1).

3 A general tensor of rank r =
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1) has exactly

(
D
r

)
different decompositions where

D =

(∑d−1
i=1 (ni − 1)

)
!

(n1 − 1)! · · · (nd−1 − 1)!
.

This value of r coincides with the generic rank in the perfect case: when
r = nd.

4 If nd >
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1), a general tensor of rank

r >
∏d−1
i=1 ni −

∑d−1
i=1 (ni − 1), e.g., a general tensor of format (n1, . . . , nd),

has infinitely many decompositions.
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Computational results: Unbalanced cases

Some known perfect cases and the number of decompositions.

(n1, . . . , nd) gen. rank # of decomp. of general tensor
(2, n, n) n (Weierstrass-Kronecker) 1
(3, 3, 5) 5 6
(3, 4, 7) 7 120
(3, 5, 9) 9 5005

(3, 6, 11) 11 352716
(4, 4, 10) 10 184756

(2, 2, 2, 5) 5 6
(2, 2, 3, 8) 8 495
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Computational results: Perfect cases, 3 factors

All perfect, balanced tensor formats of 3-tensors with
∏3
i=1 ni ≤ 150.

(n1, n2, n3) gen. rank # of decomp. of general tensor
(3, 4, 5) 6 1
(3, 6, 7) 9 38
(4, 4, 6) 8 62
(4, 5, 7) 10 ≥ 222,556

After the numerical results, we were motivated to prove the following:

Theorem (HOOS 2015)

The general tensor of format (3, 4, 5) has a unique decomposition as a sum of
6 decomposable summands.

Our proof relies on algebraic geometry, vector bundles and intersection theory,
and relies on a notion of non-abelian polarity.
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Computational results: Perfect cases, 4 factors
All perfect, balanced tensor formats with d ≥ 4 and

∏d
i=1 ni ≤ 100.

(n1, . . . , nd) gen. rank # of decomp. of general tensor
(2, 2, 2, 3) 4 1
(2, 2, 3, 4) 6 4
(2, 2, 4, 5) 8 68
(2, 3, 3, 4) 8 471
(2, 3, 3, 5) 9 7225
(3, 3, 3, 3) 9 20,596

(2, 2, 2, 2, 4) 8 447
(2, 2, 2, 3, 3) 9 18,854

(2, 2, 2, 2, 2, 3) 12 ≥ 238,879

Again, motivated by the numerical evidence we were able to prove:

Theorem (HOOS 2015)

The general tensor of format (2, 2, 2, 3) has a unique decomposition as a sum
of 4 decomposable summands.

A similar proof to the (3, 4, 5)-case also works here.
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A conjecture

Conjecture (HOOS 2015)

The only perfect formats (n1, . . . , nd) where a general tensor has a unique
decomposition are

1 (2, k, k) for some k – matrix pencils, known classically by Kronecker
normal form,

2 (3, 4, 5), and

3 (2, 2, 2, 3).

The generic rank is known to be equal to the expected one for the cubic
format (n, n, n) [Lickteig’85], which is not perfect for n ≥ 3, and in the binary
case (2, . . . , 2) for at least k ≥ 5 factors [CGG’11], which is perfect if k + 1 is a
power of 2. A numerical check for k = 7 shows it is not identifiable.
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Methods: Koszul Flattenings
The Koszul complex: linear maps Kp :

∧p
V →

∧p+1
V depending linearly on V .

Kp(v)(ϕ) = ϕ ∧ v for p ≥ 0, Kp(v)(ϕ) = ϕ(v) for p < 0.

Set VI =
∧i1V1⊗∧i2V2⊗ · · ·⊗∧idVd, and form a tensor product of Koszul maps:

KI : VI → VI+1d ,

that depend linearly on V(1,...,1) = V1⊗ · · ·⊗Vd.

Lemma (Koszul Flattening)

Suppose T ∈ V1,...,1 has tensor rank r. Let ij ≥ 0 for j = 1, . . . , h, ij < 0 for
j = h+ 1, . . . , d. The Koszul flattening KI(T ) : VI → VI+1d has rank at most

rI := r ·
∏h
j=1

(
nj−1
ij

)
·
∏d
j=h+1

(
nj−1
−ij−1

)
.

In particular, the (rI + 1)× (rI + 1) minors of KI(T ) vanish.
Meaningful if rI < min{dimVI ,dimVI+1d}.

Basic idea: A Koszul flattening of T is a matrix constructed from the entries
of T that has rank at most a multiple of the rank of T : detect Rank(T ).
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The 3× 4× 5 case

Let us denote the three factors as A = C3, B = C4, C = C5. The following are
all possible non-trivial, non-redundant Koszul flattenings (up to transpose).

usual flattenings:
K(0,−1,−1) : (B⊗C)∗ → A ,

K(−1,0,−1) : (A⊗C)∗ → B ,

K(−1,−1,0) : (A⊗B)∗ → C ,

Koszul flattenings:

K(1,−1,0) : B∗⊗A→ C⊗
∧2
A , K(1,0,−1) : C∗⊗A→ B⊗

∧2
A ,

K(0,1,−1) : C∗⊗B → A⊗
∧2
B , K(−1,1,0) : A∗⊗B → C⊗

∧2
B ,

K(−1,0,1) : A∗⊗C → B⊗
∧2
C , K(0,−1,1) : B∗⊗C → A⊗

∧2
C ,

K(−1,0,2) : A∗⊗
∧2
C → B⊗

∧3
C , K(0,−1,2) : B∗⊗

∧2
C → A⊗

∧3
C .
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An example Koszul flattening

K(0,1,−1) : C∗⊗B → A⊗
∧2
B

K0,1,−1(a⊗b⊗c) has image

(
∧0
A ∧ a)⊗(

∧1
B ∧ b)⊗(C∗(c)) ⊂

∧1
A⊗
∧2
B⊗

∧0
C.

The factor C∗(c) is just a scalar that is obtained by contracting c with C∗.

We are left with (
∧0
A ∧ a) = 〈a〉 tensored with (

∧1
B ∧ b) ⊂

∧2
B,

but (
∧1
B ∧ b) ∼= (B/b)⊗〈b〉, which is 3 dimensional.

So K0,1,−1(T ) has rank that is at most 3 times the rank of T . And since it is
18× 20, it has a chance to detect up to rank 6 tensors.
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map size mult-factor max tensor rank detected
K(0,−1,−1) 3× 20 1 3
K(−1,0,−1) 4× 15 1 4
K(−1,−1,0) 5× 12 1 5
K(1,−1,0) 15× 12 2 6
K(1,0,−1) 12× 15 2 6
K(0,1,−1) 18× 20 3 6
K(−1,1,0) 12× 30 3 4
K(−1,0,1) 40× 15 4 4
K(0,−1,1) 30× 20 4 5
K(−1,0,2) 40× 30 6 5
K(0,−1,2) 30× 40 6 5
K(0,−1,2) 30× 40 6 5

We see that the only maps that distinguish between tensor rank 5 and 6 are
K(1,−1,0), K(1,0,−1), and K(0,1,−1). Since

∧2
A ∼= A∗, the first two maps are

transposes of each other:

K(1,−1,0) = (K(1,0,−1))
t.

Thus, we proceed by considering K(1,0,−1) and K(0,1,−1).
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Methods: Apolarity
The definition of the Koszul Flattening implies

T = v1⊗ . . .⊗vd ∈ kerKI(T )⇐⇒
h⊗
j=1

(ϕj ∧ vj)⊗
d⊗

j=h+1

(ϕj(vj)) = 0

for all basis elements ϕ ∈ VI .
Think of elements of the kernel of KI(T ) as linear mappings.
Let N t P = {1, . . . , d} be the set partition such that −IN ∈ Zd>0, IP ∈ Zd≥0.

Lemma (Non-abelian Apolarity Lemma [Landsberg-Ottaviani’13:])

Suppose T =
∑r
s=1 v

s
1⊗ . . .⊗vsd. The kernel kerKI(T ) contains all maps

ψ ∈ Hom(V−IN , VIP ) such that

ψ
(
V−IN+1N ∧

⊗
j∈N

vsj
)
∧
(⊗
j∈P

vsj
)

= 0

for s = 1, . . . , r.

Basic idea: the kernel of a flattening of T can be used to gain information
about the decomposition of T .
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In our case the Apolarity Lemma says that

kerK1,0,−1(
∑s
i=1 aibici) ⊃ {ϕ ∈ Hom(C,A)|ϕ(ci) ∧ ai = 0 for i = 1, . . . , s}.

(1)
and

kerK0,1,−1(
∑s
i=1 aibici) ⊃ {ϕ ∈ Hom(C,B)|ϕ(ci) ∧ bi = 0 for i = 1, . . . , s}.

Equality should hold for honest decompositions.

Basic result from Oeding-Ottaviani [OO’13] and Landsberg-Ottaviani [LO’11]:

The set of eigenvectors of a general element in ker(KI(T )) (interpreted as the
common base locus of general sections of a certain vector bundle) contains
the set of (pieces of) rank-one summands in a decomposition of T .
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Proof of Theorem 3-4-5: Vector Bundles

For general T ∈ A⊗B ⊗ C, K1,0,−1(f) is surjective and kerK1,0,−1(T ) has
dimension dimHom(C,A)− dim∧2A⊗B = 15− 12 = 3.

Interpret K1,0,−1(T ) as a map between sections of vector bundles.

Let X = P(A)× P(B)× P(C) with (pull-back) line bundle. O(α, β, γ)

Let QA be the pullback of the quotient bundle on P(A).

Let E = QA ⊗O(0, 0, 1) (a rank 2 bundle on X) and L = O(1, 1, 1).

As in [OO’13], [LO’13], the map K1,0,−1(T ) can be identified with contraction
K1,0,−1(T ) : H0(E)−→H0(E∗ ⊗ L)∗ depending linearly on T ∈ H0(L)∗.

Apolarity: compute the common base locus of the sections of the vector
bundle ker(K0,1,−2(T )) to find the decomposition of T .
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Proof of Theorem 3-4-5: Intersection Theory I

Have K1,0,−1(T ) : H0(E)−→H0(E∗ ⊗ L)∗ depending linearly on
T ∈ H0(L)∗.

The general element in H0(E) vanishes on a codimension two subvariety
of X which has homology class c2(E) ∈ H∗(X,Z).

The ring H∗(X,Z) can be identified with Z[tA, tB , tC ]/(t3A, t
4
B , t

5
C).

The Chern polynomial of QA is 1
1+tA

, so c2(E) = t2A + tAtC + t2C .

Three general sections of H0(E) have common base locus given by

c2(E)3 =
(
t2A + tAtC + t2C

)3
= 6t2At

4
C .

This coefficient 6 coincides with the generic rank and it is the key to the
computation.
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Proof of Theorem 3-4-5: Intersection Theory II

A Macaulay2 test (M2 file on arXiv) performed on a random tensor T
gives that the common base locus of kerK1,0,−1(T ) is given by 6 points
(ai, ci) for i = 1, . . . , 6 on the 2-factor Segre variety P(A)× P(C).

By semicontinuity, the common base locus of kerK1,0,−1(T ) is given by 6
points for general tensor T . Hence, for the general tensor T , equality
holds in the Apolarity Lemma.

In particular, the decomposition T =
∑6
i=1 ai⊗bi⊗ci has a unique

solution (up to scalar) for ai, ci. It follows that also the remaining vectors
bi can be recovered uniquely, by solving a linear system.

Oeding (Auburn) Homotopy and Identifiability October 15, 2020 24 / 27



Thanks!
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The 2× 2× 2× 3 case
For this part, let A ∼= B ∼= C ∼= C2 and D ∼= C3. The only interesting Koszul
flattenings for tensors in A⊗B⊗C⊗D are the following maps, which depend
linearly on A⊗B⊗C⊗D.
The 1-flattenings (and their transposes):

K−1,0,0,0 : A∗ → B⊗C⊗D, K0,−1,0,0 : B∗ → A⊗C⊗D,

K0,0,−1,0 : C∗ → A⊗B⊗D, K0,0,0,−1 : D∗ → A⊗B⊗C,
which detect a maximum of rank 2 in the first 3 cases and a maximum of rank
3 in the last.
The 2-flattenings (and their transposes):

K0,0,−1,−1 : C∗⊗D∗ → A⊗B, K0,−1,0,−1 : B∗⊗D∗ → A⊗C,

K−1,0,0,−1 : A∗⊗D∗ → B⊗C.
The maps are all 4× 6 and detect a maximum of tensor rank 4.
The higher Koszul flattenings:

K−1,0,0,1 : A∗⊗D → B⊗C⊗
∧2
D, K0,−1,0,1 : B∗⊗C → A⊗C⊗

∧2
D,

K0,0,−1,1 : C∗⊗D → A⊗B⊗
∧2
D

These maps are all 12× 6, and detect a maximum of rank 3.
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Proof of Theorem 2-2-2-3
Suppose T ∈ A⊗B⊗C⊗D. Consider K0,0,−1,−1 : C∗⊗D∗ → A⊗B. If T is
general of rank 4, then RankK0,0,−1,−1(T ) = 4 and dim kerK0,0,−1,−1(T ) = 2.
Apolarity says that the points {cs⊗ds} are in the common base locus of the
elements in the kernel of K0,0,−1,−1(T ).
Consider line bundles E = O(0, 0, 1, 1), L = O(1, 1, 1, 1) over Seg(PC∗ × PD∗).
Two general sections of E have common base locus given by a cubic curve,
denoted CC,D of bi-degree (1,2) on Seg(PC × PD). The projection to PD is a
conic, which we denote QC .
Repeat the process for the next 2-flattening, K0,−1,0,−1 : B∗⊗D∗ → A⊗C,,
changing the roles of C and B, we obtain another conic QB in PD∗.
Finally, if QC and QB are general, Bézout’s theorem implies that they
intersect in 4 points in PD, {[d1], [d2], [d3], [d4]}.
Pull back the {di} to the curve CC,D in Seg(PC∗ × PD∗) and project to PC to
obtain 4 points {ci} on PC.
Reverse the roles of B and C and repeat to find 4 points {bi} on PB.
Reverse the roles of A and B and repeat to find 4 points {ai} on PA.
The tensor products ai⊗bi⊗ci⊗di obtained in this way are, up to scale, the
indecomposable tensors in the decomposition of the original tensor T .
Finally we solve an easy linear system to determine the coefficients λi in the
expression T =

∑4
i=1 λia

i⊗bi⊗ci⊗di.
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