Decomposing Tensors into Frames

Luke Oeding (Auburn University)
with Elina Robeva and Bernd Sturmfels (UC Berkeley)

Applications of Secant Varieties \& Tensors $\left(\operatorname{son} \operatorname{sam}\left(\Delta \mathrm{se}^{2}\right)^{2}\right.$

- Classical Algebraic Geometry: When can a given projective variety $X \subset \mathbb{P}^{n}$ be isomorphically projected into \mathbb{P}^{n-1} ?
Determined by the dimension of the secant variety $\sigma_{2}(X)$.
- Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant varieties. Berkeley-Simons program Fall'14
- Algebraic Statistics and Phylogenetics:

Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).
For star trees / bifurcating trees this is the salmon conjecture.

- Signal Processing: Blind identification of under-determined mixtures, analogous to CDMA technology for cell phones.
A given signal is the sum of many signals, one for each user.
Decompose the signal uniquely to recover each user's signal.
- Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...

Symmetric tensor decomposition, a CDMA-like scheme

 Many signals (vectors or linear forms):$$
\begin{array}{cl}
\ell_{1}=\ell_{1,1} x_{1}+\ell_{1,2} x_{2}+\cdots+\ell_{1, n} x_{n} & \\
\ell_{2}=\ell_{2,1} x_{1}+\ell_{2,2} x_{2}+\cdots+\ell_{2, n} x_{n} & \left\{x_{1}, \ldots, x_{n}\right\}-\text { basis of } \mathbb{C}^{n} \\
\vdots & \ell_{i, j}-\text { scalars } \\
\ell_{r}=\ell_{r, 1} x_{1}+\ell_{r, 2} x_{2}+\cdots+\ell_{r, n} x_{n} &
\end{array}
$$

There's no way to recover ℓ_{i} from the sum $\sum_{i=1}^{r} \ell_{i}$. Instead try to recover ℓ_{i} from the power-sum $\sum_{i=1}^{r} \ell_{i}^{d}$.

Polynomial:

$$
p=\sum_{i=1}^{r} \ell_{i}^{d}=\sum_{|I|=n} a_{l}\binom{n}{l} \cdot x_{1}^{i_{1}} \cdot x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}
$$

Symmetric Tensor:

$$
\left(a_{1}\right)_{1}
$$

Tensor decomposition:

$$
\text { Recover } r \text { and } \ell_{i, j} \text { from }\left(a_{l}\right)_{l} .
$$

A special Waring decomposition

Consider the following polynomial (symmetric $3 \times 3 \times 3 \times 3$-tensor):

$$
\begin{gather*}
p=59\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}\right)-16\left(x_{1}^{3} x_{2}+x_{1} x_{2}^{3}+x_{1}^{3} x_{3}+x_{2}^{3} x_{3}+x_{1} x_{3}^{3}+x_{2} x_{3}^{3}\right) \\
+66\left(x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}\right)+96\left(x_{1}^{2} x_{2} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1} x_{2} x_{3}^{2}\right) . \tag{1}
\end{gather*}
$$

A sum of powers representation of p is

$$
\begin{equation*}
\frac{1}{12}\left(-5 x_{1}+x_{2}+x_{3}\right)^{4}+\frac{1}{12}\left(x_{1}-5 x_{2}+x_{3}\right)^{4}+\frac{1}{12}\left(x_{1}+x_{2}-5 x_{3}\right)^{4}+\frac{1}{12}\left(3 x_{1}+3 x_{2}+3 x_{3}\right)^{4} . \tag{2}
\end{equation*}
$$

The linear forms, appropriately scaled, form a finite unit norm tight frame:

$$
V=\frac{1}{3 \sqrt{3}}\left(\begin{array}{rrrr}
-5 & 1 & 1 & 3 \tag{3}\\
1 & -5 & 1 & 3 \\
1 & 1 & -5 & 3
\end{array}\right) \text {, with } V V^{T}=\frac{4}{3} / 3 \text { and }\left\|\mathbf{v}_{\mathbf{i}}\right\|=1 \forall i
$$

The title refers to the task of finding the output (2) from the input (1).
This particular decomposition can be found easily using Sylvester's classical Catalecticant Algorithm, as explained in [Oeding-Ottaviani '11]. In general, this will be more difficult to do.

Some Frames

\begin\{frame\} }

$$
\sqrt{\frac{2}{3}} \cdot\left(\begin{array}{ccc}
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
1 & -\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

\end\{frame\} }

Frames:

 See [Casazza, et. al], [Cahil-Mixon-Strawn], etc.A frame is a collection of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ that span a Hilbert space $\left(\mathbb{R}^{n}\right.$ or $\left.\mathbb{C}^{n}\right)$.

Set $V=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{r} \\ \mid & \mid & & \mid\end{array}\right)$. We call V a finite unit norm tight frame if

$$
\begin{equation*}
V \cdot V^{T}=\frac{r}{n} \cdot \operatorname{Id}_{n} \quad \text { and } \quad \sum_{j=1}^{n} v_{i j}^{2}=1 \quad \text { for } i=1,2, \ldots, r . \tag{4}
\end{equation*}
$$

This is an inhomogeneous system of $n^{2}+r$ quadratic equations in $r \cdot n$ unknowns.
The funtf variety, $\mathcal{F}_{r, n}$, is the subvariety of $\mathbb{C}^{r \times n}$ (an affine space) defined by (4).
The frame is called tight since for all $\mathbf{x} \in \mathbb{H}: \frac{r}{n}\|\mathbf{x}\|^{2} \leq \sum_{i=1}^{r}\left|\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle\right|^{2} \leq \frac{r}{n}\|\mathbf{x}\|^{2}$.
The projective funtf variety $\mathcal{G}_{r, n}$ is the image of $\mathcal{F}_{r, n}$ in $\left(\mathbb{P}^{n-1}\right)^{r}$.

Fundamental Algebraic Geometry of the funtf variety

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live?
- What is your dimension?
- What is your degree?
- What are your intrinsic defining equations?
- Do you have any friends?
- How are you parametrized?

Fundamental Algebraic Geometry of the funtf variety

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\quad \mathcal{F}_{r, n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$
\operatorname{dim}\left(\mathcal{F}_{r, n}\right)=(n-1) \cdot\left(r-\frac{n}{2}-1\right) \quad \text { provided } r>n \geq 2 .
$$

- What is your degree?
- What are your intrinsic defining equations? $\quad V V^{T}=\frac{r}{n} \cdot I, \quad\left\|\mathbf{v}_{i}\right\|=1 \quad \forall i$.
- Do you have any friends?
- How are you parametrized?

Fundamental Algebraic Geometry of the funtf variety

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\quad \mathcal{F}_{r, n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$
\operatorname{dim}\left(\mathcal{F}_{r, n}\right)=(n-1) \cdot\left(r-\frac{n}{2}-1\right) \quad \text { provided } r>n \geq 2 .
$$

- What is your degree? Good Question.
- What are your intrinsic defining equations? $\quad V V^{T}=\frac{r}{n} \cdot I, \quad\left\|\mathbf{v}_{i}\right\|=1 \quad \forall i$.
- Do you have any friends?
- How are you parametrized?

Fundamental Algebraic Geometry of the funtf variety

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\quad \mathcal{F}_{r, n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$
\operatorname{dim}\left(\mathcal{F}_{r, n}\right)=(n-1) \cdot\left(r-\frac{n}{2}-1\right) \quad \text { provided } r>n \geq 2 .
$$

- What is your degree? Good Question.
- What are your intrinsic defining equations? $\quad V V^{T}=\frac{r}{n} \cdot I, \quad\left\|\mathbf{v}_{i}\right\|=1 \quad \forall i$.
- Do you have any friends?

Theorem (Cahil-Mixon-Strawn)

$\mathcal{F}_{r, n}$ is irreducible when $r \geq n+2>4$.

- How are you parametrized?

Fundamental Algebraic Geometry of the funtf variety

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\quad \mathcal{F}_{r, n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$
\operatorname{dim}\left(\mathcal{F}_{r, n}\right)=(n-1) \cdot\left(r-\frac{n}{2}-1\right) \quad \text { provided } r>n \geq 2 .
$$

- What is your degree? Good Question.
- What are your intrinsic defining equations? $\quad V V^{T}=\frac{r}{n} \cdot I, \quad\left\|\mathbf{v}_{i}\right\|=1 \quad \forall i$.
- Do you have any friends?

Theorem (Cahil-Mixon-Strawn)

$\mathcal{F}_{r, n}$ is irreducible when $r \geq n+2>4$.

- How are you parametrized? Great Question!

Numerical Methods can help

r	n	$\operatorname{dim} \mathcal{F}_{r, n}$	$\operatorname{deg} \mathcal{F}_{r, n}$	\# components \& degrees
3	2	1	$8 \cdot \cdot 2$	8 components, each degree 2
4	2	2	$12 \cdot 4$	12 components, each degree 4
5	2	3	112	irreducible
6	2	4	240	irreducible
7	2	5	496	irreducible
4	3	3	$16 \cdot 8$	16 components, each degree 8
5	3	5	1024	irreducible
6	3	7	2048	irreducible
7	3	9	4096	irreducible
5	4	6	$32 \cdot 40$	32 components, each degree 40
6	4	9	20800	irreducible
7	4	12	65536	irreducible

Degree computations performed using Bertini.

Frame-Decomposable Tensors

If $T=\left(t_{i_{1} i_{2} \ldots i_{d}}\right)$ is a symmetric tensor in $\operatorname{Sym}_{d}\left(\mathbb{C}^{n}\right)$ then such a decomposition takes the form

$$
\begin{equation*}
T=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i}^{\otimes d} \tag{5}
\end{equation*}
$$

Here $\lambda_{i} \in \mathbb{C}$ and $\mathbf{v}_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{\text {in }}\right) \in \mathbb{C}^{n}$ for $i=1,2, \ldots, r$. The smallest r for which a representation (5) exists is the (Waring) rank of T.

A frame decomposition is an expression $T=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i}^{\otimes d}$, where $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right\}$ form a frame.

The Zariski closure of the set of all tensors T admitting a frame decomposition is an algebraic variety we denote $\mathcal{T}_{r, n, d}$.

When $r=n \mathcal{T}_{r, n, d}$ is the familiar odeco variety. In a similar spirit, we call $\mathcal{T}_{r, n, d}$ the fradeco variety.

Fundamental Algebraic Geometry of the fradeco variety

Dear fradeco variety:

- What is your dimension?

Proposition (O-.Robeva-Sturmfels)

For all $r>n$ and $d>1$, the dimension of $\mathcal{T}_{r, n, d} \subset \operatorname{Sym}_{d} \mathbb{C}^{n}$ is bounded above by

$$
\begin{equation*}
\min \left\{(n-1)(r-n)+\frac{(n-1)(n-2)}{2}+r-1,\binom{n+d-1}{d}-1\right\} \tag{6}
\end{equation*}
$$

Notice that $\mathcal{T}_{r, n, d}$ is the closed image of a rational map:

$$
\mathcal{F}_{r, n} \times \mathbb{P}^{r-1} \longrightarrow \mathcal{T}_{r, n, d}
$$

The dimension of the image of this map is bounded above by the dimension of the domain.

Conjecture (O-.Robeva-Sturmfels)

The dimension of the variety $\mathcal{T}_{r, n, d}$ is equal to (6) for all $r>n$ and $d>1$.

Geometric interplay between fradeco and secant varieties

$\sigma_{r} \nu_{d} \mathbb{P}^{n-1}:=r$-th secant variety of the d-th Veronese embedding of \mathbb{P}^{n-1}. lives in $\mathbb{P}\left(\operatorname{Sym}_{d}\left(\mathbb{C}^{n}\right)\right)$ and comprises rank r symmetric tensors.
The same ambient space contains the fradeco variety $\mathcal{T}_{r, n, d}$ and all its secant varieties $\sigma_{s} \mathcal{T}_{r, n, d}$.

Theorem (O-.Robeva-Sturmfels)

For any $r>n \geq d \geq 2$, we have

$$
\begin{equation*}
\sigma_{r-n} \nu_{d} \mathbb{P}^{n-1} \subset \mathcal{T}_{r, n, d} \subset \sigma_{r} \nu_{d} \mathbb{P}^{n-1} \tag{7}
\end{equation*}
$$

and hence $\mathcal{T}_{r-n, n, d} \subset \mathcal{T}_{r, n, d}$ whenever $r \geq 2 n$. Also, if $r=r_{1} r_{2}$ with $r_{1} \geq 2$ and $r_{2} \geq n$, then

$$
\begin{equation*}
\sigma_{r_{1}} \mathcal{T}_{r_{2}, n, d} \subseteq \mathcal{T}_{r, n, d} \tag{8}
\end{equation*}
$$

Numerical Answers

Theorem (O-. Robeva-Sturmfels)

The following table gives the degree and some defining polynomials of the fradeco variety $\mathcal{T}_{r, n, d}$ in all cases when $n \geq 3$ and $1 \leq \operatorname{dim}\left(\mathcal{T}_{r, n, d}\right) \cdot \operatorname{codim}\left(\mathcal{T}_{r, n, d}\right) \leq 100$:

variety	dim	codim	degree	known equations
$\mathcal{T}_{4,3,3}$	6	3	17	3 cubics, 6 quartics
$\mathcal{T}_{4,3,4}$	6	8	74	6 quadrics, 37 cubics
$\mathcal{T}_{4,3,5}$	6	14	191	27 quadrics, 104 cubics
$\mathcal{T}_{5,3,4}$	9	5	210	1 cubic, 6 quartics
$\mathcal{T}_{5,3,5}$	9	11	1479	20 cubics, 213 quartics
$\mathcal{T}_{6,3,4}$	12	2	99	none in degree ≤ 5
$\mathcal{T}_{6,3,5}$	12	8	4269	one quartic
$\mathcal{T}_{7,3,5}$	15	5	≥ 38541	none in degree ≤ 4
$\mathcal{T}_{8,3,5}$	18	2	690	none in degree ≤ 5
$\mathcal{T}_{10,3,6}$	24	3	≥ 16252	none in degree ≤ 7
$\mathcal{T}_{5,4,3}$	10	9	830	none in degree ≤ 4
$\mathcal{T}_{6,4,3}$	14	5	1860	none in degree ≤ 3
$\mathcal{T}_{7,4,3}$	18	1	194	one in degree 194

Monodromy for degree calculations (using Bertini)

The problem:
Compute the degree of the image of the map $\mathcal{F}_{r, n} \times \mathbb{C}^{r} \longrightarrow \operatorname{Sym}_{d} \mathbb{C}^{n}$

- Select random $V \in \mathcal{F}_{r, n}$ and $\lambda \in \mathbb{R}^{r}$, compute the fradeco tensor $\Sigma_{d}(V, \lambda)$.
- Fix a random $\mathcal{R} \cong \mathbb{C}^{c} \subset \operatorname{Sym}_{d} \mathbb{C}^{n}$, and point U in the affine space $\mathcal{R}+U$.
- The affine cone $\widehat{\mathcal{T}}_{r, n, d}$ and the affine space $\mathcal{R}+U$ intersect in $\operatorname{deg}\left(\widehat{\mathcal{T}}_{r, n, d}\right)$ many points in $\mathrm{Sym}_{d} \mathbb{C}^{n}$.
- One these points is the known tensor $\Sigma_{d}(V, \lambda)$.
- Goal: discover all the other intersection points by a Parameter Homotopy over the base space $\left(\operatorname{Sym}_{d} \mathbb{C}^{n}\right) / R$.
- We fix two further random points P_{1} and P_{2} in $\operatorname{Sym}_{d} \mathbb{C}^{n}$.
- The data we fixed now define a (triangular) monodromy loop

- We use Bertini to perform each linear parameter homotopy.
- Iterate the process, until we don't find any new points after 20 iterations.

First equations for fradeco varieties: binary forms

Theorem (O-.Robeva-Sturmfels)

Fix $r \in\{3,4, \ldots, 9\}$. There exists a matrix \mathcal{M}_{r} with the following properties:
(a) It has $r-1$ rows and $d-r+1$ columns, entries linear in $t_{0}, t_{1}, \ldots, t_{d}$.
(b) The columns involve r of the unknowns t_{i} and are identical up to index shifts.
(c) The maximal minors of \mathcal{M}_{r} form a Gröbner basis for the prime ideal of $\mathcal{T}_{r, 2, d}$.

These matrices can be chosen as follows:

$$
\left.\begin{array}{rl}
\mathcal{M}_{3} & =\left(\begin{array}{cccc}
t_{0}-3 t_{2} t_{1}-3 t_{3} & t_{2}-3 t_{4} t_{3}-3 t_{5} & \cdots & t_{d-3}-3 t_{d-1} \\
3 t_{1}-t_{3} & 3 t_{2}-t_{4} & 3 t_{3}-t_{5} & 3 t_{4}-t_{6}
\end{array} \cdots\right.
\end{array}\right)
$$

First equations for fradeco varieties: Ternary forms

Proposition (O-.Robeva-Sturmfels)

The ideal of the fradeco variety $\mathcal{T}_{4,3,3}$ of ternary cubics of fradeco rank 4 is minimally generated by 3 cubics and 6 quartics.

Proof.

(1) maple: Find the explicit equations vanishing on $\mathcal{T}_{4,3,3}$ of lowest possible degree using linear algebra and exact arithmetic.
(2) Macaulay2: This ideal is Cohen-Macaulay of codim. 3 and deg. 17 .
(3) Bertini: $\mathcal{T}_{4,3,3}$ has codim. 3 and deg. 17 to conclude.

Actually decomposing tensors into frames

Let $r=5$ and $d=8$. We illustrate this method for the binary octic $p=$

$$
\begin{gathered}
(-237-896 \alpha) x^{8}+8(65+241 \alpha) x^{7} y+28(-16-68 \alpha) x^{6} y^{2}+56(5+31 \alpha) x^{5} y^{3} \\
+70(2-56 \alpha) x^{4} y^{4}+56(-7+193 \alpha) x^{3} y^{5}+28(32-716 \alpha) x^{2} y^{6} \\
+8(-115+2671 \alpha) x y^{7}+(435-9968 \alpha) y^{8},
\end{gathered}
$$

where $\alpha=\sqrt{3}-2$. We find

$$
\mathcal{M}_{5}=\left(\begin{array}{cccc}
-13548 \alpha+595 & 3636 \alpha-150 & -996 \alpha+42 & 348 \alpha+18 \\
2092 \alpha-94 & -548 \alpha+26 & 100 \alpha-22 & 148 \alpha+50 \\
-2092 \alpha+94 & 548 \alpha-26 & -100 \alpha+22 & -148 \alpha-50 \\
996 \alpha-30 & -348 \alpha-6 & 396 \alpha+90 & -1236 \alpha-317
\end{array}\right) .
$$

This matrix has rank 3 and its left kernel is the span of the vector $\mathbf{w}=(0,1,1,0)$.

Actually decomposing tensors into frames

Therefore, $0=\mathbf{w} M_{5}$

$$
=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)^{T}\left(\begin{array}{ccccc}
v_{12}^{5}+5 v_{11}^{5} & v_{22}^{5}+5 v_{21}^{5} & v_{32}^{5}+5 v_{31}^{5} & v_{42}^{5}+5 v_{41}^{5} & v_{52}^{5}+5 v_{51}^{5} \\
v_{11} v_{12}^{4}-3 v_{11}^{3} v_{12}^{2} & v_{21} v_{22}^{4}-3 v_{21}^{3} v_{22}^{2} & v_{31} v_{32}^{4}-3 v_{31}^{3} v_{32}^{2} & v_{41} v_{42}^{4}-3 v_{41}^{3} v_{42}^{2} & v_{51} v_{52}^{4}-3 v_{51}^{3} v_{52}^{2} \\
3 v_{11}^{2} v_{12}^{3}-v_{11}^{4} v_{12} & 3 v_{21}^{2} v_{22}^{3}-v_{21}^{4} v_{22} & 3 v_{31}^{2} v_{32}^{3}-v_{31}^{4} v_{32} & 3 v_{41}^{2} v_{42}^{3}-v_{41}^{4} v_{42} & 3 v_{51}^{2} v_{52}^{3}-v_{51}^{4} v_{52} \\
5 v_{11}^{3} v_{12}^{2}+v_{11}^{5} & 5 v_{21}^{3} v_{22}^{2}+v_{21}^{5} & 5 v_{31}^{3} v_{32}^{2}+v_{31}^{5} & 5 v_{41}^{3} v_{42}^{2}+v_{41}^{5} & 5 v_{51}^{3} v_{52}^{2}+v_{51}^{5}
\end{array}\right) .
$$

The 5 columns of the desired tight frame $V=\left(v_{i j}\right)$ are the distinct zeros in \mathbb{P}^{1} of

$$
f\left(v_{1 i}, v_{2 i}\right)=v_{1 i} v_{2 i}^{4}-3 v_{1 i}^{3} v_{2 i}^{2}+3 v_{1 i}^{2} v_{2 i}^{3}-v_{1 i}^{4} v_{2 i} \quad \text { for } i=1, \ldots, 5
$$

We find

$$
V=\left(\begin{array}{lllll}
1 & 0 & 1 & \alpha & 1 \\
0 & 1 & 1 & 1 & \alpha
\end{array}\right) \in \mathcal{G}_{5,2}
$$

It remains to solve the linear system of nine equations in $\lambda=\left(\lambda_{1}, \ldots, \lambda_{5}\right)$ given by

$$
p=\lambda_{1} x^{8}+\lambda_{2} y^{8}+\lambda_{3}(x+y)^{8}+\lambda_{4}(\alpha x+y)^{8}+\lambda_{5}(x+\alpha y)^{8} .
$$

The unique solution is $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{5}=1$ and $\lambda_{4}=1552+896 \sqrt{3}$.

"Waring-enhanced" frame decomposition: ternary quartics

$\sum_{i+j+k=4} \frac{24}{i!j!k!} t_{i j k} x^{i} y^{j} z^{k}=\begin{aligned} & 467 x^{4}+152 x^{3} y+1448 x^{3} z+660 x^{2} y^{2}-1488 x^{2} y z+4020 x^{2} z^{2}+536 x y^{3}-1992 x y^{2} z \\ & +2352 x y z^{2}+944 x z^{3}+227 y^{4}-1000 y^{3} z+2148 y^{2} z^{2}-1960 y z^{3}+1267 z^{4} .\end{aligned}$
Ternary quartics of rank ≤ 5 form a hypersurface of degree 6 in \mathbb{P}^{14} defined by the determinant of the 6×6 catalecticant matrix C.
Here the dimension is one less than expected (Alexander-Hirschowitz Thm.).
The given quartic has a rank 5 catalecticant matrix $C=$

$$
\left[\begin{array}{cccccc}
t_{400} & t_{310} & t_{301} & t_{220} & t_{211} & t_{202} \\
t_{310} & t_{220} & t_{211} & t_{130} & t_{121} & t_{112} \\
t_{301} & t_{211} & t_{202} & t_{121} & t_{112} & t_{103} \\
t_{220} & t_{130} & t_{121} & t_{040} & t_{031} & t_{022} \\
t_{211} & t_{121} & t_{112} & t_{031} & t_{022} & t_{013} \\
t_{202} & t_{112} & t_{103} & t_{022} & t_{013} & t_{004}
\end{array}\right]=\left[\begin{array}{cccccc}
467 & 38 & 362 & 110 & -124 & 670 \\
38 & 110 & -124 & 134 & -166 & 196 \\
362 & -124 & 670 & -166 & 196 & 236 \\
110 & 134 & -166 & 227 & -250 & 358 \\
-124 & -166 & 196 & -250 & 358 & -490 \\
670 & 196 & 236 & 358 & -490 & 1267
\end{array}\right] .
$$

The kernel of C is spanned by the vector corresponding to the quadric

$$
q=14 u^{2}-u v-2 u w-4 v^{2}-11 v w-10 w^{2}
$$

The points ($u: v: w)$ in \mathbb{P}^{2} lying on the conic $\{q=0\}$ represent all linear forms $u x+v y+w z$ that may appear in a rank 5 decomposition of P.
Our task is to find five points on the conic $\{q=0\}$ that form a frame $V \in \mathcal{G}_{5,3}$. This translates into solving a rather challenging system of polynomial equations.

One of the solutions to the system of equations arising from the frame on the conic is

$$
V=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right)=\left(\begin{array}{rrrcc}
-1 & 2 & 2 & 1+2 \sqrt{3} & -1+2 \sqrt{3} \\
2 & 2 & -1 & -2+\sqrt{3} & 2+\sqrt{3} \\
0 & 1 & -2 & 5 & -5
\end{array}\right) .
$$

The given ternary quartic has the frame decomposition

$$
\mathbf{v}_{1}^{\otimes 4}+\mathbf{v}_{2}^{\otimes 4}+\mathbf{v}_{3}^{\otimes 4}+\mathbf{v}_{4}^{\otimes 4}+\mathbf{v}_{5}^{\otimes 4}
$$

