Decomposing Tensors into Frames

Luke Oeding (Auburn University)

with Elina Robeva and Bernd Sturmfels (UC Berkeley)

Applications of Secant Varieties & Tensors (Join SIAM/(ag)²)

• Classical Algebraic Geometry: When can a given projective variety $X \subset \mathbb{P}^n$ be isomorphically projected into \mathbb{P}^{n-1} ?

Determined by the dimension of the secant variety $\sigma_2(X)$.

- Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant varieties. Berkeley-Simons program Fall'14
- Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

• Signal Processing: Blind identification of under-determined mixtures, analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user's signal.

• Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...

Symmetric tensor decomposition, a CDMA-like scheme Many signals (vectors or linear forms):

$$\begin{aligned} \ell_1 &= \ell_{1,1} x_1 + \ell_{1,2} x_2 + \dots + \ell_{1,n} x_n \\ \ell_2 &= \ell_{2,1} x_1 + \ell_{2,2} x_2 + \dots + \ell_{2,n} x_n \\ &\vdots \\ \ell_r &= \ell_{r,1} x_1 + \ell_{r,2} x_2 + \dots + \ell_{r,n} x_n \end{aligned} \qquad \{x_1, \dots, x_n\} \text{ -- basis of } \mathbb{C}^n \\ \end{aligned}$$

There's no way to recover ℓ_i from the sum $\sum_{i=1}^r \ell_i$. Instead try to recover ℓ_i from the power-sum $\sum_{i=1}^r \ell_i^d$.

Polynomial:

$$p = \sum_{i=1}^r \ell_i^d = \sum_{|I|=n} a_I \binom{n}{I} \cdot x_1^{i_1} \cdot x_2^{i_2} \cdots x_n^{i_n}$$

Symmetric Tensor:

 $(a_I)_I$

Tensor decomposition:

Recover r and
$$\ell_{i,j}$$
 from $(a_i)_i$.

A special Waring decomposition

Consider the following polynomial (symmetric $3 \times 3 \times 3 \times 3$ -tensor):

$$p = 59(x_1^4 + x_2^4 + x_3^4) - 16(x_1^3x_2 + x_1x_2^3 + x_1^3x_3 + x_2^3x_3 + x_1x_3^3 + x_2x_3^3) + 66(x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2) + 96(x_1^2x_2x_3 + x_1x_2^2x_3 + x_1x_2x_3^2).$$
(1)

A sum of powers representation of p is

$$\frac{1}{12}(-5x_1+x_2+x_3)^4 + \frac{1}{12}(x_1-5x_2+x_3)^4 + \frac{1}{12}(x_1+x_2-5x_3)^4 + \frac{1}{12}(3x_1+3x_2+3x_3)^4.$$
 (2)

The linear forms, appropriately scaled, form a finite unit norm tight frame:

$$V = \frac{1}{3\sqrt{3}} \begin{pmatrix} -5 & 1 & 1 & 3\\ 1 & -5 & 1 & 3\\ 1 & 1 & -5 & 3 \end{pmatrix}, \text{ with } VV^{T} = \frac{4}{3}I_{3} \text{ and } ||\mathbf{v}_{i}|| = 1 \forall i \quad (3)$$

The title refers to the task of finding the output (2) from the input (1).

This particular decomposition can be found easily using Sylvester's classical *Catalecticant Algorithm*, as explained in [Oeding-Ottaviani '11]. In general, this will be more difficult to do.

Some Frames

\begin{frame}

$$\sqrt{\frac{2}{3}} \cdot \begin{pmatrix} 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Oeding, Robeva, Sturmfel

Frames:

See [Casazza, et. al], [Cahil-Mixon-Strawn], etc.

A frame is a collection of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ that span a Hilbert space (\mathbb{R}^n or \mathbb{C}^n).

Set
$$V = \begin{pmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_r \\ | & | & | \end{pmatrix}$$
. We call V a finite unit norm tight frame if
 $V \cdot V^T = \frac{r}{n} \cdot \mathrm{Id}_n$ and $\sum_{j=1}^n v_{ij}^2 = 1$ for $i = 1, 2, \dots, r$. (4)

This is an inhomogeneous system of $n^2 + r$ quadratic equations in $r \cdot n$ unknowns. The funtf variety, $\mathcal{F}_{r,n}$, is the subvariety of $\mathbb{C}^{r \times n}$ (an affine space) defined by (4). The frame is called *tight* since for all $\mathbf{x} \in \mathbb{H}$: $\frac{r}{n} ||\mathbf{x}||^2 \leq \sum_{i=1}^{r} |\langle \mathbf{x}, \mathbf{v}_i \rangle|^2 \leq \frac{r}{n} ||\mathbf{x}||^2$. The *projective funtf variety* $\mathcal{G}_{r,n}$ is the image of $\mathcal{F}_{r,n}$ in $(\mathbb{P}^{n-1})^r$.

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live?
- What is your dimension?

- What is your degree?
- What are your intrinsic defining equations?
- Do you have any friends?

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\mathcal{F}_{r,n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$\dim(\mathcal{F}_{r,n}) = (n-1) \cdot (r - \frac{n}{2} - 1) \quad \text{provided } r > n \ge 2$$

- What is your degree?
- What are your intrinsic defining equations? $VV^T = \frac{r}{n} \cdot I$, $||\mathbf{v}_i|| = 1 \quad \forall i$.
- Do you have any friends?

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\mathcal{F}_{r,n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$\dim(\mathcal{F}_{r,n}) = (n-1) \cdot (r - \frac{n}{2} - 1) \quad \text{provided } r > n \ge 2$$

- What is your degree? Good Question.
- What are your intrinsic defining equations? $VV^T = \frac{r}{n} \cdot I$, $||\mathbf{v}_i|| = 1 \quad \forall i$.
- Do you have any friends?

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\mathcal{F}_{r,n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$\dim(\mathcal{F}_{r,n}) = (n-1) \cdot (r - \frac{n}{2} - 1) \quad \text{provided } r > n \ge 2$$

- What is your degree? Good Question.
- What are your intrinsic defining equations? $VV^T = \frac{r}{n} \cdot I$, $||\mathbf{v}_i|| = 1 \quad \forall i$.
- Do you have any friends?

Theorem (Cahil-Mixon-Strawn)

 $\mathcal{F}_{r,n}$ is irreducible when $r \ge n+2 > 4$.

As you would for any algebraic variety you meet, you should ask the funtf variety:

- Where do you live? $\mathcal{F}_{r,n} \subset \mathbb{C}^{r \times n}$
- What is your dimension?

Theorem (Dykema-Strawn)

$$\dim(\mathcal{F}_{r,n}) = (n-1) \cdot (r - \frac{n}{2} - 1) \quad \text{provided } r > n \ge 2$$

- What is your degree? Good Question.
- What are your intrinsic defining equations? $VV^T = \frac{r}{n} \cdot I$, $||\mathbf{v}_i|| = 1 \quad \forall i$.
- Do you have any friends?

Theorem (Cahil-Mixon-Strawn)

- $\mathcal{F}_{r,n}$ is irreducible when $r \ge n+2 > 4$.
 - How are you parametrized? Great Question!

Numerical Methods can help

r	n	dim $\mathcal{F}_{r,n}$	deg $\mathcal{F}_{r,n}$ # components & degrees				
3	2	1	8.2				
3	2	1	<u> </u>	8 components, each degree 2			
4	2	2	12 · 4	12 components, each degree 4			
5	2	3	112	irreducible			
6	2	4	240	irreducible			
7	2	5	496	irreducible			
4	3	3	16 · 8	16 components, each degree 8			
5	3	5	1024	irreducible			
6	3	7	2048	irreducible			
7	3	9	4096	irreducible			
5	4	6	32 · 40	32 components, each degree 40			
6	4	9	20800	irreducible			
7	4	12	65536	irreducible			

Degree computations performed using Bertini.

Frame-Decomposable Tensors

If $T = (t_{i_1 i_2 \cdots i_d})$ is a symmetric tensor in $\text{Sym}_d(\mathbb{C}^n)$ then such a decomposition takes the form

$$T = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i^{\otimes d}.$$
 (5)

Here $\lambda_i \in \mathbb{C}$ and $\mathbf{v}_i = (v_{i1}, v_{i2}, \dots, v_{in}) \in \mathbb{C}^n$ for $i = 1, 2, \dots, r$. The smallest r for which a representation (5) exists is the (Waring) rank of T.

A frame decomposition is an expression $T = \sum_{i=1}^{r} \lambda_i \mathbf{v}_i^{\otimes d}$, where $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ form a frame.

The Zariski closure of the set of all tensors T admitting a frame decomposition is an algebraic variety we denote $T_{r,n,d}$.

When $r = n \mathcal{T}_{r,n,d}$ is the familiar *odeco* variety. In a similar spirit, we call $\mathcal{T}_{r,n,d}$ the *fradeco* variety.

Dear fradeco variety:

• What is your dimension?

Proposition (O-.Robeva-Sturmfels)

For all r > n and d > 1, the dimension of $\mathcal{T}_{r,n,d} \subset \operatorname{Sym}_d \mathbb{C}^n$ is bounded above by

$$\min\left\{(n-1)(r-n)+\frac{(n-1)(n-2)}{2}+r-1,\ \binom{n+d-1}{d}-1\right\}.$$
 (6)

Notice that $\mathcal{T}_{r,n,d}$ is the closed image of a rational map:

$$\mathcal{F}_{r,n} \times \mathbb{P}^{r-1} \longrightarrow \mathcal{T}_{r,n,d}.$$

The dimension of the image of this map is bounded above by the dimension of the domain.

Conjecture (O-.Robeva-Sturmfels)

The dimension of the variety $\mathcal{T}_{r,n,d}$ is equal to (6) for all r > n and d > 1.

Geometric interplay between fradeco and secant varieties

 $\sigma_r \nu_d \mathbb{P}^{n-1} := r$ -th secant variety of the *d*-th Veronese embedding of \mathbb{P}^{n-1} . lives in $\mathbb{P}(\operatorname{Sym}_d(\mathbb{C}^n))$ and comprises rank *r* symmetric tensors. The same ambient space contains the fradeco variety $\mathcal{T}_{r,n,d}$ and all its secant varieties $\sigma_s \mathcal{T}_{r,n,d}$.

Theorem (O-.Robeva–Sturmfels)

For any $r > n \ge d \ge 2$, we have

$$\sigma_{r-n}\nu_d \mathbb{P}^{n-1} \subset \mathcal{T}_{r,n,d} \subset \sigma_r \nu_d \mathbb{P}^{n-1}, \tag{7}$$

and hence $\mathcal{T}_{r-n,n,d} \subset \mathcal{T}_{r,n,d}$ whenever $r \ge 2n$. Also, if $r = r_1r_2$ with $r_1 \ge 2$ and $r_2 \ge n$, then

$$\sigma_{r_1}\mathcal{T}_{r_2,n,d} \subseteq \mathcal{T}_{r,n,d}. \tag{8}$$

Numerical Answers

Theorem (O-. Robeva–Sturmfels)

The following table gives the degree and some defining polynomials of the fradeco variety $\mathcal{T}_{r,n,d}$ in all cases when $n \geq 3$ and $1 \leq \dim(\mathcal{T}_{r,n,d}) \cdot \operatorname{codim}(\mathcal{T}_{r,n,d}) \leq 100$:

variety	dim	codim	degree	known equations
$\mathcal{T}_{4,3,3}$	6	3	17	3 cubics, 6 quartics
$\mathcal{T}_{4,3,4}$	6	8	74	6 quadrics, 37 cubics
$\mathcal{T}_{4,3,5}$	6	14	191	27 quadrics, 104 cubics
$\mathcal{T}_{5,3,4}$	9	5	210	1 cubic, 6 quartics
$\mathcal{T}_{5,3,5}$	9	11	1479	20 cubics, 213 quartics
$\mathcal{T}_{6,3,4}$	12	2	99	none in degree ≤ 5
$\mathcal{T}_{6,3,5}$	12	8	4269	one quartic
$\mathcal{T}_{7,3,5}$	15	5	\geq 38541	none in degree ≤ 4
$\mathcal{T}_{8,3,5}$	18	2	690	none in degree ≤ 5
$T_{10,3,6}$	24	3	≥ 16252	none in degree ≤ 7
$\mathcal{T}_{5,4,3}$	10	9	830	none in degree ≤ 4
$\mathcal{T}_{6,4,3}$	14	5	1860	none in degree ≤ 3
$\mathcal{T}_{7,4,3}$	18	1	194	one in degree 194

Oeding, Robeva, Sturmfels

Monodromy for degree calculations (using Bertini) The problem:

Compute the degree of the image of the map $\mathcal{F}_{r,n} imes \mathbb{C}^r \longrightarrow \operatorname{Sym}_d \mathbb{C}^n$

- Select random $V \in \mathcal{F}_{r,n}$ and $\lambda \in \mathbb{R}^r$, compute the fradeco tensor $\Sigma_d(V, \lambda)$.
- Fix a random $\mathcal{R} \cong \mathbb{C}^c \subset \operatorname{Sym}_d \mathbb{C}^n$, and point U in the affine space $\mathcal{R} + U$.
- The affine cone $\widehat{\mathcal{T}}_{r,n,d}$ and the affine space $\mathcal{R} + U$ intersect in $\deg(\widehat{\mathcal{T}}_{r,n,d})$ many points in $\operatorname{Sym}_{d}\mathbb{C}^{n}$.
- One these points is the known tensor $\Sigma_d(V, \lambda)$.
- Goal: discover all the other intersection points by a Parameter Homotopy over the base space $(\text{Sym}_d \mathbb{C}^n)/R$.
- We fix two further random points P_1 and P_2 in $\operatorname{Sym}_d \mathbb{C}^n$.
- The data we fixed now define a (triangular) monodromy loop

We use Bertini to perform each linear parameter homotopy.Iterate the process, until we don't find any new points after 20 iterations.

First equations for fradeco varieties: binary forms

Theorem (O-.Robeva–Sturmfels)

Fix $r \in \{3, 4, \dots, 9\}$. There exists a matrix \mathcal{M}_r with the following properties:

(a) It has r - 1 rows and d - r + 1 columns, entries linear in t_0, t_1, \ldots, t_d .

(b) The columns involve r of the unknowns t_i and are identical up to index shifts. (c) The maximal minors of \mathcal{M}_r form a Gröbner basis for the prime ideal of $\mathcal{T}_{r,2,d}$. These matrices can be chosen as follows:

$$\mathcal{M}_{3} = \begin{pmatrix} t_{0}-3t_{2} t_{1}-3t_{3} t_{2}-3t_{4} t_{3}-3t_{5} \cdots t_{d-3}-3t_{d-1} \\ 3t_{1}-t_{3} 3t_{2}-t_{4} 3t_{3}-t_{5} 3t_{4}-t_{5} \cdots 3t_{d-2}-t_{d} \end{pmatrix}$$

$$\mathcal{M}_{4} = \begin{pmatrix} t_{0}+t_{4} t_{1}+t_{5} t_{2}+t_{6} t_{3}+t_{7} \cdots t_{d-4}+t_{d} \\ t_{1}-t_{3} t_{2}-t_{4} t_{3}-t_{5} t_{4}-t_{6} \cdots t_{d-3}+t_{d-1} \\ t_{2} t_{3} t_{4} t_{5} \cdots t_{d-2} \end{pmatrix}$$

$$\mathcal{M}_{5} = \begin{pmatrix} t_{0}+5t_{2} t_{1}+5t_{3} t_{2}+5t_{4} t_{3}+5t_{5} \cdots t_{d-5}+5t_{d-3} \\ t_{1}-3t_{3} t_{2}-3t_{4} t_{3}-3t_{5} t_{4}-3t_{5} \cdots t_{d-4}-3t_{d-2} \\ 3t_{2}-t_{4} 3t_{3}-t_{5} 3t_{4}-t_{6} 3t_{5}-t_{7} \cdots 3t_{d-3}-t_{d-1} \\ 5t_{3}+t_{5} 5t_{4}+t_{6} 5t_{5}+t_{7} 5t_{6}+t_{8} \cdots 5t_{d-2}+t_{d} \end{pmatrix}$$

$$\mathcal{M}_{6} = \begin{pmatrix} t_{0}-t_{6} t_{1}-t_{7} t_{2}-t_{8} t_{3}-t_{9} \cdots t_{d-6}-t_{d} \\ t_{1}+t_{5} t_{2}+t_{6} t_{3}+t_{7} t_{4}+t_{8} \cdots t_{d-5}+t_{d-1} \\ t_{2}-t_{4} t_{3}-t_{5} t_{4}-t_{6} t_{5}-t_{7} \cdots t_{d-4}-t_{d-2} \\ t_{3} t_{4} t_{5} t_{5}+3t_{6} t_{5}-t_{7} \cdots t_{d-3}-t_{d-3} \\ t_{0}+3t_{4} t_{1}+3t_{5} t_{2}+3t_{6} t_{5}+3t_{7} \cdots t_{d-6}+3t_{d-2} \end{pmatrix} \dots \dots$$

Oeding, Robeva, Sturmfels

First equations for fradeco varieties: Ternary forms

Proposition (O-.Robeva-Sturmfels)

The ideal of the fradeco variety $T_{4,3,3}$ of ternary cubics of fradeco rank 4 is minimally generated by 3 cubics and 6 quartics.

Proof.

- maple: Find the explicit equations vanishing on T_{4,3,3} of lowest possible degree using linear algebra and exact arithmetic.
- Macaulay2: This ideal is Cohen-Macaulay of codim. 3 and deg. 17.
- **③** Bertini: $\mathcal{T}_{4,3,3}$ has codim. 3 and deg. 17 to conclude.

Actually decomposing tensors into frames

Let r = 5 and d = 8. We illustrate this method for the binary octic p =

$$\begin{array}{l}(-237-896\alpha)x^8+8(65+241\alpha)x^7y+28(-16-68\alpha)x^6y^2+56(5+31\alpha)x^5y^3\\+70(2-56\alpha)x^4y^4+56(-7+193\alpha)x^3y^5+28(32-716\alpha)x^2y^6\\+8(-115+2671\alpha)xy^7+(435-9968\alpha)y^8,\end{array}$$

where $\alpha = \sqrt{3} - 2$. We find

$$\mathcal{M}_5 \ = \ \begin{pmatrix} -13548\alpha + 595 \ 3636\alpha - 150 \ -996\alpha + 42 \ 348\alpha + 18 \\ 2092\alpha - 94 \ -548\alpha + 26 \ 100\alpha - 22 \ 148\alpha + 50 \\ -2092\alpha + 94 \ 548\alpha - 26 \ -100\alpha + 22 \ -148\alpha - 50 \\ 996\alpha - 30 \ -348\alpha - 6 \ 396\alpha + 90 \ -1236\alpha - 317 \end{pmatrix}.$$

This matrix has rank 3 and its left kernel is the span of the vector $\mathbf{w} = (0, 1, 1, 0)$.

Actually decomposing tensors into frames

Therefore, $0 = \mathbf{w} M_5$

$$= \begin{pmatrix} 0\\1\\0 \end{pmatrix}^{T} \begin{pmatrix} v_{12}^{5} + 5v_{11}^{5} & v_{22}^{5} + 5v_{21}^{5} & v_{32}^{5} + 5v_{31}^{5} & v_{42}^{5} + 5v_{41}^{5} & v_{52}^{5} + 5v_{51}^{5} \\ v_{11}v_{12}^{4} - 3v_{11}^{3}v_{12}^{2} & v_{21}v_{22}^{4} - 3v_{31}^{3}v_{22}^{2} & v_{31}v_{42}^{3} - 3v_{31}^{3}v_{32}^{2} & v_{41}v_{42}^{4} - 3v_{41}^{3}v_{42}^{2} & v_{51}v_{52}^{5} - 5v_{51}^{3} \\ 3v_{11}^{2}v_{12}^{3} - v_{11}^{4}v_{12} & 3v_{21}^{2}v_{22}^{3} - v_{41}^{4}v_{22} & 3v_{31}^{2}v_{32}^{3} - v_{31}^{3}v_{32} & v_{41}^{4}v_{42}^{3} - 3v_{41}^{4}v_{42} & 3v_{51}^{2}v_{52}^{3} - v_{51}^{4}v_{52} \\ 5v_{11}^{3}v_{12}^{2} + v_{11}^{5} & 5v_{31}^{2}v_{22}^{2} + v_{21}^{5} & 5v_{31}^{3}v_{32}^{2} + v_{31}^{5} & 5v_{41}^{3}v_{42}^{2} + v_{41}^{5} & 5v_{31}^{3}v_{52}^{2} + v_{51}^{5} \end{pmatrix}$$

The 5 columns of the desired tight frame $V = (v_{ij})$ are the distinct zeros in \mathbb{P}^1 of

$$f(v_{1i}, v_{2i}) = v_{1i}v_{2i}^4 - 3v_{1i}^3v_{2i}^2 + 3v_{1i}^2v_{2i}^3 - v_{1i}^4v_{2i} \quad \text{for } i = 1, ..., 5.$$

We find

$$V = \begin{pmatrix} 1 & 0 & 1 & \alpha & 1 \\ 0 & 1 & 1 & 1 & \alpha \end{pmatrix} \in \mathcal{G}_{5,2}.$$

It remains to solve the linear system of nine equations in $\lambda = (\lambda_1, \dots, \lambda_5)$ given by

$$p = \lambda_1 x^8 + \lambda_2 y^8 + \lambda_3 (x+y)^8 + \lambda_4 (\alpha x+y)^8 + \lambda_5 (x+\alpha y)^8$$

The unique solution is $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_5 = 1$ and $\lambda_4 = 1552 + 896\sqrt{3}$.

"Waring-enhanced" frame decomposition: ternary quartics

$$\begin{split} &\sum_{i+j+k=4} \frac{24}{i!j!k!} t_{ijk} x^i y^j z^k = \frac{467 x^4 + 152 x^3 y + 1448 x^3 z + 660 x^2 y^2 - 1488 x^2 y z + 4020 x^2 z^2 + 536 x y^3 - 1992 x y^2 z}{+2352 x y z^2 + 944 x z^3 + 227 y^4 - 1000 y^3 z + 2148 y^2 z^2 - 1960 y z^3 + 1267 z^4}. \end{split}$$
Ternary quartics of rank ≤ 5 form a hypersurface of degree 6 in \mathbb{P}^{14} defined by the determinant of the 6×6 catalecticant matrix C. Here the dimension is one less than expected (Alexander-Hirschowitz Thm.). The given quartic has a rank 5 catalecticant matrix C =

$\int t_{400}$	t_{310}	t_{301}	t_{220}	t_{211}	t ₂₀₂		467	38	362	110	-124	670]
t ₃₁₀	t_{220}	t_{211}	t_{130}	t_{121}	t ₁₁₂	=	38	110	-124	134	-166	196
t ₃₀₁	t_{211}	t_{202}	t_{121}	t_{112}	t ₁₀₃		362	-124	670	-166	196	236
t ₂₂₀	t_{130}	t_{121}	t_{040}	t_{031}	t ₀₂₂		110	134	-166	227	-250	358
t ₂₁₁	t_{121}	t_{112}	t_{031}	t_{022}	t ₀₁₃		-124	-166	196	-250	358	-490
t ₂₀₂	t{112}	t_{103}	t_{022}	t ₀₁₃	t ₀₀₄		670	196	236	358	-490	1267

The kernel of C is spanned by the vector corresponding to the quadric $q = 14u^2 - uv - 2uw - 4v^2 - 11vw - 10w^2$. The points (u : v : w) in \mathbb{P}^2 lying on the conic $\{q = 0\}$ represent all linear forms ux + vy + wz that may appear in a rank 5 decomposition of P. Our task is to find five points on the conic $\{q = 0\}$ that form a frame $V \in \mathcal{G}_{5,3}$. This translates into solving a rather challenging system of polynomial equations. One of the solutions to the system of equations arising from the frame on the conic is

$$V = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5) = \begin{pmatrix} -1 & 2 & 2 & 1+2\sqrt{3} & -1+2\sqrt{3} \\ 2 & 2 & -1 & -2+\sqrt{3} & 2+\sqrt{3} \\ 0 & 1 & -2 & 5 & -5 \end{pmatrix}.$$

The given ternary quartic has the frame decomposition

$$\mathbf{v}_1^{\otimes 4} + \mathbf{v}_2^{\otimes 4} + \mathbf{v}_3^{\otimes 4} + \mathbf{v}_4^{\otimes 4} + \mathbf{v}_5^{\otimes 4}.$$

