


Image reconstruction
Google “Duomo Florence”

Try to reconstruct a 3D model of this beautiful structure from 2D images.
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The Pinhole Camera

Model the 3D world as projective 3-space, P3.
Use homogeneous coordinates for points [X ] := [X0 : X1 : X2 : X3].

The 2D image is modeled by projective 2-space, P2.
Points [x ] := [x0 : x1 : x2].

The standard pinhole camera is modeled by projection P3 → P2.

The projection is induced from a linear map on affine spaces, represented by a 3× 4 camera matrix A.

The projection is simply [X ] 7→ [A.X ] = [x ]

Assume A has full rank. Can choose coordinates so that A =
(
I3|~a4

)
,

where ~a4 will be the coordinates of the image of the focal point of the camera.
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Fundamental Matrices

For 2 camera matrices A1, and A2, point correspondences between two images are recorded by the 3× 3
fundamental matrix, F, which is defined by the following algebraic conditions:

If A1X = x and A2X = x ′ (a point-point correspondence) then x>Fx ′ = 0.

If the camera matrices are known, and the stacked camera matrix is (after change in coordinates)

M =
(
A>1 | A>2

) ∼= (
1 0 0
0 1 0
0 0 1

x1,1 x1,2 x1,3

1 0 0
0 1 0
0 0 1

x2,1 x2,2 x2,3

)
.

The entries of the fundamental matrix are the 4× 4 minors of A using 2 columns from each block:

F (M) =

 0 x1,3 − x2,3 −x1,2 + x2,2
−x1,3 + x2,3 0 x1,1 − x2,1
x1,2 − x2,2 −x1,1 + x2,1 0

 .
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Fundamental Matrices

Theorem (Hartley-Zisserman Thm. 9.10)

The fundamental matrix determines the camera matrices up to projective transformation. That is, if
(P,P ′) and (P̃, P̃ ′) are two pairs of matrices with the same fundamental matrix F, then there exists a
nonsingular 4× 4 matrix H such that P = P̃H and P ′ = P̃ ′H.

If the camera matrices are not known, F has 9 homogeneous parameters (only defined up to scale) and
must have rank 2, so it is determined by the linear conditions imposed by 7 point-point correspondences.

Once the two camera matrices are reconstructed, triangulation allows us to reconstruct the 3D world
points associated to each point-point correspondence.

Typical method for camera matrix reconstruction: Random Sample Consensus (RANSAC) Algorithms.

Typical issue: sometimes difficult to determine 7 inliers in two different images.

Possible improvement: use more images to reduce the number of required inliers.
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General multi-focal tensors

Stack camera matrices Ai : CN → Cn to form the N ×m · n matrix

M =
(
A>1 A>2 . . . A>m

)
.

M has maximal rank on an open set of camera configurations.

Fix a partition π ` N, with #π ≤ m parts, N ≤ m · n, and π1 ≤ n:
Zπ is the variety of the maximal minors of M using πi columns from A>i .

Zπ is an equivariant projection from the Grassmannian Gr(N,mn).

Zπ is invariant under the action of GL(n)×#π.
I see also [Hartley-Zisserman], [Aholt-Sturmfels-Thomas], [Heyden], [Triggs], [Faugeras-Mourrain]...

We are most interested in the case N = 4, m = 4 n = 3:
Z2,2 is the variety of fundamental matrices (skew-symmetric 3× 3 matrices).
Z2,1,1 is the variety of trifocal tensors (special 3× 3× 3 tensors). (see [Aholt-O.’14]).
Z1,1,1,1 is the variety of quadrifocal tensors (special 3× 3× 3× 3 tensors).
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Frank and Prank for trifocal tensors

A (rank 4) tensor in A∗ ⊗ B∗ ⊗ C :

T = a1 ⊗ b2 ⊗ c1 + a3 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3.

3 contractions:

T (A)=

a3 0 0
a1 a2 0
0 0 a3

 ,

P-RankA = 3

T (B)=

b2 0 0
0 b2 0
b1 0 b3

 ,

P-RankB = 3

T (C)=

 0 c1 0
0 c2 0
c1 0 c3


P-RankC = 2 ⇒ 10 cubics

3 flattenings to 3× 9 matries:

F (A)=

0 0 0
1 0 0
0 0 0

∣∣∣∣ 0 0 0
0 1 0
0 0 0

∣∣∣∣ 1 0 0
0 0 0
0 0 1

 ,

F-RankA = 3

F (B)=

0 0 0
0 0 0
1 0 0

∣∣∣∣ 1 0 0
0 1 0
0 0 0

∣∣∣∣ 0 0 0
0 0 0
0 0 1

,

F-RankB = 3

F (C)=

0 1 0
0 0 0
1 0 0

∣∣∣∣ 0 0 0
0 1 0
0 0 0

∣∣∣∣ 0 0 0
0 0 0
0 0 1

 ,

F-RankC = 3
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Polarization: how to write down 10 special cubics
Think of a 3× 3× 3 tensor as three 3× 3 matrices stacked in the rows of a matrix T = (T1 |T2 |T3)

=

T000 T100 T200
T010 T110 T210
T020 T120 T220

∣∣∣∣ T001 T101 T201
T011 T111 T211
T021 T121 T221

∣∣∣∣ T002 T102 T202
T012 T112 T212
T022 T122 T222


Use dummy variables z1, z2, z3 to form the generic contraction:

T (z) = z1T1 + z2T2 + z3T3.T000z0 + T001z1 + T002z2 T100z0 + T101z1 + T102z2 T200z0 + T201z1 + T202z2
T010z0 + T011z1 + T012z2 T110z0 + T111z1 + T112z2 T210z0 + T211z1 + T212z2
T020z0 + T021z1 + T022z2 T120z0 + T121z1 + T122z2 T220z0 + T221z1 + T222z2


If T is a trifocal tensor then T (z) is a bifocal tensor for all z .

Recall F is a bifocal tensor if and only if it has rank 2.

Therefore det(T (z)) ≡ 0. The coefficients in z are 10 cubic equations in the entries of T .

Gives a basis of the Schur Module (S3V1⊗
∧3V2⊗

∧3V3)∗.
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Polarization: how to write down 600 special cubics

Think of a 3× 3× 3× 3 tensor as nine 3× 3 matrices

Q(x , y) =
3∑

i,j=1

xiyjQi,j .

A bilinear function in (xi , yi ).

If Q is a quadrifocal tensor then Q(x , y) is a bifocal tensor for all x , y .

Therefore det(Q(x , y)) ≡ 0. The coefficients in x , y are 100 cubic equations in the entries of Q.

Gives a basis of S3S3
∧3∧3 - the 6 permutations give the 600 cubic equations.
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We would like to give a complete algebraic description of the quadrifocal variety Z by finding the
generators of its defining ideal I (Z ) (the implicit defining equations of the model).

Naively, to find out if the variety Z lives in a linear subspace, put the coordinates of 81 points in the

rows of a matrix P =

 Z1

...
Z81

 The null space of P is the vector space of linear forms vanishing on

the 81 points (and very likely all of Z ).

If Null(P) = 0, there are no linear forms in the ideal of Z .

In higher degree d we can Veronese re-embed the points and solve another linear algebra problem to
find the space of degree d polynomials vanishing on Z .

But the dimensions grow quickly:(
1 81 3321 91881 1929501 32801517 470155077 5843355957 64276915527 . . .

)
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The ideal I (Z ) is a G = S4 n GL(3)×4-submodule of R = C[C3 ⊗ C3 ⊗ C3 ⊗ C3].
R has a G -isotypic decomposition:

R =
⊕
d≥0

⊕
π`4d

SπV⊗Mπ.

where π is a multi-partition, the sum is over non-redundant permutations,

Schur module: SπV =
⊕

σ∈S4/∼(Sπσ.1V1⊗Sπσ.2V2⊗Sπσ.3V3⊗Sπσ.4V4)

Multiplicity space (Specht Module): Mπ.

Our tasks for small degree d are the following:

Compute a basis of Mπ for each π.

Evaluate the highest-weight space of SπV⊗Mπ on points of Z .

Obtain a list of G -modules (with multiplicity) in I (Z ).

Determine which modules are among the minimal generators.

Determine the maximal degree of minimal generators.
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Invariant Theory and Young Symmetrizers

Multi-partition: (221, 221, 221,221), Filling: F =

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c

Auxiliary polynomial: p =

∣∣∣∣∣ a
1
1 a12 a13

b1
1 b1

2 b1
3

c11 c12 c13

∣∣∣∣∣ ∣∣∣ d1
1 d1

2

e11 e12

∣∣∣ · ∣∣∣∣∣ a
2
1 a22 a23

b2
1 b2

2 b2
3

c21 c22 c23

∣∣∣∣∣ ∣∣∣ d2
1 d2

2

e21 e22

∣∣∣ · ∣∣∣∣∣ a
3
1 a32 a33

b3
1 b3

2 b3
3

c31 c32 c33

∣∣∣∣∣ ∣∣∣ d3
1 d3

2

e31 e32

∣∣∣ · ∣∣∣∣∣ a
4
1 a42 a43

b4
1 b4

2 b4
3

c41 c42 c43

∣∣∣∣∣ ∣∣∣ d4
1 d4

2

e41 e42

∣∣∣
1 Start with p(a, b, c , d , e, x) of multi-degree (4, 4, 4, 4, 4, 0).
2 Replace every a1i a

2
j a

3
ka

4
l with xi,j,k,l

I Produce a polynomial of multi-degree (0, 4, 4, 4, 4, 1).

3 Replace every b1i b
2
j b

3
kb

4
l with xi,j,k,l

I Produce a polynomial of multi-degree (0, 0, 4, 4, 4, 2).

4 Repeat for c , d , e,
I Produce P(x) of multi-degree (0, 0, 0, 0, 0, 5) (possibly zero).

5 output: P(x) highest weight vector of S221C3⊗S221C3⊗S221C3⊗S221.
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Evaluation of Young Symmetrizers

Multi-partition: (221, 221, 221,221), Filling: F =

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c

Auxiliary polynomial: p =

∣∣∣∣∣ a
1
1 a12 a13

b1
1 b1

2 b1
3

c11 c12 c13

∣∣∣∣∣ ∣∣∣ d1
1 d1

2

e11 e12

∣∣∣ · ∣∣∣∣∣ a
2
1 a22 a23

b2
1 b2

2 b2
3

c21 c22 c23

∣∣∣∣∣ ∣∣∣ d2
1 d2

2

e21 e22

∣∣∣ · ∣∣∣∣∣ a
3
1 a32 a33

b3
1 b3

2 b3
3

c31 c32 c33

∣∣∣∣∣ ∣∣∣ d3
1 d3

2

e31 e32

∣∣∣ · ∣∣∣∣∣ a
4
1 a42 a43

b4
1 b4

2 b4
3

c41 c42 c43

∣∣∣∣∣ ∣∣∣ d4
1 d4

2

e41 e42

∣∣∣
Point: Z ∈ C3⊗C3⊗C3⊗C3

1 Start with p(a, b, c , d , e, x) of multi-degree (4, 4, 4, 4, 4, 0).
2 Replace every a1i a

2
j a

3
ka

4
l with xi,j,k,l and substitute xi,j,k,l → Zi,j,k,l .

I Produce a polynomial of multi-degree (0, 4, 4, 4, 4, 0).

3 Replace every b1i b
2
j b

3
kb

4
l with xi,j,k,l and substitute xi,j,k,l → Zi,j,k,l .

I Produce a polynomial of multi-degree (0, 0, 4, 4, 4, 0).

4 Repeat for c , d , e,
5 output: the value of p(Z ).

I Producing p(Z) takes much less time and memory than p(x).
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Compute a basis of Mπ for each π.

The following fillings form a basis of M(221),(221),(221),(221):

F1 =

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c , F2 =

a d
b e
c ⊗

a d
b e
c ⊗

a c
b e
d ⊗

a c
b e
d

F3 =

a d
b e
c ⊗

a d
b e
c ⊗

a c
b e
d ⊗

a c
b d
e , F4 =

a d
b e
c ⊗

a c
b e
d ⊗

a d
b e
c ⊗

a c
b e
d

F5 =

a d
b e
c ⊗

a c
b e
d ⊗

a d
b e
c ⊗

a c
b d
e , F6 =

a d
b e
c ⊗

a c
b e
d ⊗

a c
b e
d ⊗

a d
b e
c

Check rank(pi (Zj)) for 6 random points Zj , ⇒ independence.
A character computation ⇒ spanning.
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Evaluate the highest-weight space of SπV⊗Mπ on Z .

Using the basis of M(221),(221),(221),(221) and Young symmetrizers,
populate the matrix (one processor core per entry)

(pi (Zj))

for 6 random points Zj of Z .

Find null-space (kernel) is the span of(
−11/12 1 0 1 0 1

)T
So (S221C3⊗S221C3⊗S221C3⊗S221C3) has multiplicity 1 in I (Z ).
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Quadrifocal Hilbert Function
Compute the Hilbert function for I (Z ) ⊂ R = C[x1, . . . , x81] for as high a degree as possible.

Using Representation Theory and parallel computing we found:

d = 0 1 2 3 4 5 6 7 8
HFR = (1 81 3321 91881 1929501 32801517 470155077 5843355957 64276915527 . . .
dimI = (0 0 0 600 48600 1993977 54890407 1140730128 18051062139
mingens = (0 0 0 600 0 ≥ 1377 37586 ?0 ?162000

-- deg # reps max_mult

------------------------------

-- 1 | 1 1 }

-- 2 | 3 1 } Use Symmetry

-- 3 | 9 3 }

-- 4 | 25 4 } Use Grid Computing

-- 5 | 59 13 }

-- 6 | 163 93 } Use Multi-threading

-- 7 | 288 301 }

-- 8 | 619 608 } Use a High Performance Cluster

-- 9 | 1205 2226 } (deg 9 seems slightly out of reach)
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Obtain a list of G -modules (with multiplicity) in I (Z ).

Repeat the process for isotypic decompositions of C[(C3)⊗4]d .

Obtain multiplicities of all modules in I (Z )d for small degree d .
For instance, I (Z )d = 0 for d = 1, 2

Input the results into SchurRings (by Stillman and Raicu) in Macaualy2.

Modules are represented as polynomials, with coefficients the multiplicities.
For example I (Z )3 is expressed as

(s(1,1,1)t(1,1,1)u3 + (s(1,1,1)t3 + s3t(1,1,1))u(1,1,1))v3
+((s(1,1,1)t3 + s3t(1,1,1))u3 + s3t3u(1,1,1))v(1,1,1)

or modding out by the S4 action, I (Z )3 = s3t3u(1,1,1)v(1,1,1)

which represents the module S4.(S3C3⊗S3C3⊗S1,1,1C3⊗S1,1,1C3).
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Determine which modules are minimal generators.

Let R = C[(C3)⊗4]. Using the Young symmetrizer algorithm,
I (Z )4 = (s4t4 + (s4 + s(3,1))t(3,1))u(2,1,1)v(2,1,1)

Using SchurRings, we find that
I (Z )3 · R1 = I (Z )4.
(all multiplicities are one, and every module in I (Z )4 occurs in I (Z )3 · R1)
So there are no minimal generators in degree 4.

We find two modules in I (Z )5 that cannot occur in I (Z )3 · R2:
s(3,1,1)t(3,1,1)u(3,1,1)v(3,1,1) + s(2,2,1)t(2,2,1)u(2,2,1)v(2,2,1)

We find the following modules occur in I (Z )6 but cannot occur in I (Z )5 · R1:
(s6t(3,3)u(3,3) + ((2s(4,1,1) + 2s(3,3))t(3,3) + s(3,2,1)t(3,2,1) + 2s(2,2,2)t(2,2,2))u(2,2,2))v(2,2,2)
We find that all modules in I (Z )7 can occur in I (Z )6 · R1,
strong evidence that there are no minimal generators in degree 7.
In degree 8 we find a surprise: S4,4S4,4S4,4S4,2,2 ⊗ C2 must occur among the minimal generators.
In degree 9 we weren’t able to compute all modules because of a lack of computing time, but the
modules we were able to compute produced no new necessary minimal generators.
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graded
piece

dim Id
necessary G modules
of minimal generators

dimension
of mingens

I2 0 M2 = 0 0
I3 600 M3 = S3S3S1,1,1S1,1,1 600
I4 48,600 M4 = 0 0
I5 1,993,977 M5 = S3,1,1S3,1,1S3,1,1S3,1,1

⊕S2,2,1S2,2,1S2,2,1S2,2,1

1,377

I6 54,890,407 M6 = S4,1,1S3,3S2,2,2S2,2,2⊗C2

⊕S3,3S3,3S2,2,2S2,2,2⊗C2

⊕S3,2,1S3,2,1S2,2,2S2,2,2

⊕S2,2,2S2,2,2S2,2,2S2,2,2⊗C2

⊕S6S3,3S3,3S2,2,2

37,586

I7 1,140,730,128 M7 = 0 0
I8 18,051,062,139 M8 = S4,4S4,4S4,4S4,2,2 ⊗ C2 162,000
I9 ≥ 188,850,321,637 M9 ≥ S5,4S5,4S5,4S4,3,2

⊕S5,4S5,4S5,4S5,2,2

3,087,000

Table: The ideal of the quadrifocal variety up to degree 9. We used M2 to rule out many possible minimal
generators and conjecture that these equations suffice to define the quadrifocal variety.
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