Defining Equations of Secant Varieties to
Segre-Veronese Varieties

Luke Oeding
University of California, Berkeley
October &8, 2011

Joint work with Dustin Cartwright and Daniel Erman

Oeding supported by NSF IRFP (#0853000) while at the University of Florence.

Luke Oeding (UC Berkeley) Equations for Border Rank October 8, 2011 1/ 4194304



Partially symmetric tensors (in coordinates)

Choose bases uq, ..., U, of U* = C™ and vy,...,v, of V= C".
In coordinates T € U* ® S?V* is

T = ZTijkui®Uj X Vg
1:7j7k
with symmetry: T;;, = Ti;.
Collect terms:

T=ZUi®ZEjkvj®vk=ZUi®Ai
i ik i

with A; € S2V*, T is a collection of m symmetric n x n matrices.
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Secant varieties and partially symmetric tensors

o Partially symmetric tensors: T € U* ® S?V*.

@ Segre-Veronese variety: Seg (PU* x vo(PV*)) = projective variety
of rank-1 partially symmetric tensors, i.e. tensors of the form
[T] =[u®v®u).

o Rank: min r, s.t. T'= )7, u; ® v; ® v;, with u; € U*, v; € V*,

@ Secant variety: o, (Seg (PU* x v9(PV*))) = Zariski closure of
rank-r partially symmetric tensors.

o T has border rank-r if [T'] € o, but [T] & op—1.

o How do we determine the border rank of a given 717
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An appearance in Signal Processing (cf. A. Slapak and
A. Yeredor 2010)

Let ¢(Z) be a cumulant generating function.

Construct the (symmetric) Hessian matrix A = (%{%j) (7s) for
each point ¢s. Sampling ¢ at m different points, one constructs a
partially symmetric tensor u1 @ Ay + -+ + Uy @ Ay, € U* @ S2V*.

@ The matrix equations I will describe can be used to study small
border ranks of such tensors in the case m = 3 and r < 5.

When r < 3 we can also let m be arbitrary.

A tensor decomposition may be desired. The border rank of this
tensor is also useful information.
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Equations from flattenings

Realize T =), u; ® A; as a linear map (a matrix) via inclusion:

U*®S2V* C (U@ V*) o V™.

Aq
Ao

Yor: V=2l Uyt g v

Construction is linear in 7

Yo, + Yo = Yo 41

Ay Al A1+A4;

Ay AL Ag+ Al
C ]+ =

Am Al A+ AL,
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Equations from flattenings

Realize T'= )", u; ® A; as a linear map (a matrix) via inclusion:

U S2V* C (U ®@V*) o V™.

Ar Az o Ap)t "
¢0,T¢V—>( — Lurev
10 0..0
Upper bound on rank: Let Ay = ( . >, A; = ( . >, 1=2..m
0.0 0 .0

1..00 0.0 0\*
Yo =\ . . .
000 0.0 "0
Let kg = Rank(¢o ). Note: Rank(T) =1 = ko = 1:

.. subadditivity of rank: Rank(T) =1r = ko <7

Let I <, = ideal generated by (r + 1) x (r + 1) minors of 1 7:
I,.o<r are necessary conditions for brank(T) < r.
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Partially symmetric subspace varieties

Definition

The subspace variety Sub,, s is the variety of tensors x € (U* @ S?V*)
such that there exist vector spaces U* C U* and V* C V* of dimensions
m' and n' respectively with x € (U* @ S?V*) C (U* @ S?V*).

T € Sub,, ,» implies that after changing coordinates,
o = (A b AL, 0 0)F

with A} = (% 0) and B; a symmetric n’ x n/ matrix.
Equations of flattenings define this variety (see next slide).
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Partially symmetric subspace varieties

A straightforward adaptation of an argument in [Landsberg-Weyman|]
using Weyman’s geometric technique implies that Sub,,/ ;s is normal
with rational singularities. Moreover

Proposition (Cartwright-Erman-O.)

The defining ideal of Suby, s equals I, <y i.e. the (n' +1) x (n' +1)
minors of the flattening V. — U* ® V*.

Moreover, the defining ideal of Suby, v is the ideal generated by I, <y
and the (m' 4+ 1) x (m' 4 1) minors of the flattening U — S?V*,

Proof involved representation theory, commutative algebra and
algebraic geometry.

C. Raicu has recently proved that for any Segre-Veronese variety X,
and r < 2, the ideal I(X) is generated by 3 x 3 minors of flattenings.
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Equations from flattenings

o Have two flattenings V — U* @ V* and U — S?V*.

o Fact: for r =1,2, the (r+ 1) x (r + 1) minors of flattenings are
necessary and sufficient conditions for brank(T) < r.

o Ex.: T € C3 ® S%C*. Generic border rank is 6.
- Conditions for brank(T) < 37
U — S%2V* is a 3 x 10 matrix, useless - no 4 x 4 minors.
V - U*®V*is a4 x 12 matrix, 4 x 4 minors necessary, but not
sufficient.
- Conditions for brank(T) < 47
- Both flattenings are useless - no 5 x 5 minors!
o Geometric statement: oy (P? X vo(P3)) S P?, but I,;y<4 is trivial.
- Ly<r is only non-trivial when r» < n = dim(V).

@ Need more equations to determine border ranks!
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New equations: History

@ Symmetric: Aronhold’s invariant (1849) is the equation for
o3(vs(P?)) & P

o Partially symmetric: E. Toeplitz (1877) essentially gave the
equation for o5 (P? x va(P?)) S P?.

@ Unrestricted: V. Strassen (1983) gave the equation for
o4 (P? x P2 x P?)) G P%

@ Ubiquitous: G. Ottaviani (2007) united and generalized all three
of these equations with a uniform construction we call exterior
flattenings.
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Exterior flattenings

Have a natural inclusion U* ¢ NU* @ N'U. Construct a new linear
map via the inclusion U* ® S?V* C (V* ® /\1U> ® (V* ® /\2U*>.
Fix m = 3. With T'= ), u; ® A;, we choose a good basis and write
( 0 Az —Ag)
—-As 0 A

b Ve NUr ~A2 =4 O

Vo NU*.

Note A; € S?°V* = 1,7 is skew-symmetric = rank is even.
Construction is linear in 71"

i+ Vi =Yt

0 Az —A 0 Az —A) 0 Az+Ay —Az—Aj
—As 0 Aq + —A/3 0 All = —A3—A/3 0 A1+A/1
Az —A; O

AL —AL 0 AotAL —A1—A, 0
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Exterior Flattenings - new equations for border rank:

Let k1 = k1(T) = Rank(y1,1).

1.0 0..0
LetA1:< . >’A2:< . ),zsz
0 -0 0 .0

Note: Rank(T) =1= K1 =2:

zp (;)4 As —AA2 <0 0) 0. (1 )
= — 0 = )
ur A —Ar 0 0.0 0.0
0.0\ /=10
. . ) 0
<0 c. 0) ( 0o . 0)
.. subadditivity of rank: Rank(T) =r = k1 <

Let Iy, <o, = ideal generated by 2(r + 1) x 2(

2r
r + 1) Pfaffians of ¢, .
I);, <2, are necessary conditions for brank(T") <r.
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Exterior flattenings more generally
Include U* ® §2V* C (V* ® NU) ® (v* ® /\9’+1U*>.
Example m =4: Let T' = Zle u; ® A;. In suitable coordinates:

dor: V@ /\OU* (A1 Az Az Ag)

0 As —Ax O
—-A3 0 A; 0
Ay —A1 O 0
Ay 0 0 —A;

0 Ay 0 —As

0 0 Ay —As

V* ® /\1U*,

—As 0 0 0 Az —As
0 —-A4 0 —-A3 0 Aq
0 0 —-As Ay —A1 O

Ysr: Vo Nur A2 A A g pippe

In general one finds Rank(T) <r = k;(T) < 'r’(mj_l).
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Equations for border rank, dim(U) = 3

Definition

Let ¢ = (cp,c1,¢2). Iu<e = ideal generated by In;<c; for j =1,2,3.
Define ¥y, <¢; and X<, to be the subschemes (subvarieties) of
P(U* ® S?V*) defined by the ideals I,;,<c; and I.<. respectively.

Already shown necessary conditions for border rank < r. Geometric
statement:

Proposition J

Fix r > 1. If c = (r,2r,7) then 0,(X) C E.<c.

We want to know when the necessary conditions are also sufficient.
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Main Theorem

Theorem (Cartwright-Erman-O.)

Let m = dim(U) = 3 and let X = Seg(PU* x va(PV™)).
For r <5, the defining ideal of the variety o,(X) is Ii<(rorr)-

What does it mean?

Restatement for Practical Use

Let T =uy ® Ay + us @ As +ug ® Az, A; symmetric n X n matrices.
Suppose v < 5. The (r + 1) x (r + 1) minors of Yo and

2(r +1) x 2(r + 1) Pfaffians of 1,7 are necessary and sufficient
conditions to decide the border rank r of T.
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Idea of proof:

Theorem (Cartwright-Erman-O.)

For r <5, the defining ideal of the variety 0,.(X) is Li<(r2rr)-

Proof involves a mixture of commutative algebra, representation theory
and algebraic geometry.

We use the result on subspace varieties of U* ® S?V* and prove that
the ideal of o,.(P! x va(P"~1)) = Suby, is I,<-

Next we handle the case n = r by relating I,;, <2, to the ideal of the
variety of commuting symmetric matrices. This requires the use Erman
and Velasco’s bound for the dimension of this variety which holds for

r <35.

Finally, using again a connection to the subspace variety, we reduce the
general case to that of the case n = r.
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Asside: representations for equations

Representation theory allows us to compare equations constructed in
different ways via a Schur module description. It also tells us the
dimension of the space of equations. Use LiE for experiments.

Proposition (Cartwright-Erman-O.)
As GL(U) x GL(V)-modules we have the following (multiplicity free!):
Uno<r)rr = P U ® Siri1 iV,
|m|=r+1
and when dim(U) is 3,

(In1§2r)r+1 = @ S7|'U® S(g)r+1_7r/‘/,
|m|=r+1

where the partition m = (w1, 72, m3) (at most 3 parts) and
w3 > 1+ 1—n. 7 is the conjugate partition to w, and
SxW =the associated (irreducible) GL(W')-module.

v
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Asside: representations for equations

A representation of polynomials comes from xg-conditions if and only if

it is of the form:
partition transposed

iti fr+1
partition of -+ © with a column adjoined

W

HU@S |}V

o [ T [ [ [ [ [*

(as long as dimensions allow this)

October 8, 2011 32768 _/
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Asside: representations for equations

In the case dim U = 3, a representation of polynomials comes from
k1-conditions if and only if it is of the form:
3-wide column with

artition of r+1 ® . .
P transposed partition excised
ST1TU ® Spis Vv
1] k| k| ok
k| k| k
o k| k| ok -
k| k| k
k |k |k |
k| k| ok | ‘
k| k| k _| ‘
=5 U ® SeeV
k |k |k
:: k| k| ok
k| k| k
Rl Bl
el Bl

(as long as the dimensions allow this)
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Representation Theory example: Seg(P? x vy(P?)).

Example (Degree 3)

The 3 x 3 minors of U — S?V* are included in (o< (2,4,2))3:

Ios)s = SO T T T8 T T 19 1118

(95

(Isi<4)3 = S

ST T TP

The blue modules are the 3 x 3 minors of U — S2V*. Can verify this
by computing A*(U) @ A(S?V) with Lie:

> to_part(plethysm([1,1,1],[2,0,0],A3) )
1X[3,3,0,0] +1X[4,1,1,0]
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Representation Theory example: Seg(P? x vy(P3)).

Example (Degree 4)

<1n053)4:553u | 69?38 J | \@SD—I_I” 1© 5111 IS@
(IK156)4:SBHL/ I @S%:‘S I EDCU 17 ST |S@

Note that dim((In0§3)4) = dim(([nlg6)4) = 495.

However I;<363) = Is;<6 + Iro<3 1s generated by a 630-dimensional
space of quartics. Notice that neither I); <3 nor I, <¢ belongs to the
other.

Can also verify these statements using a computer (Macaulay2).
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Main Theorem in case X = Seg (P? x vy(P?)) C P*

o I(02(X)) is generated by the 3 x 3 minors of the flattening o 1
and by the 3 x 3 minors of the flattening U — S?V*. Now have
alternate description; that the 3 x 3 minors of ¢y 7 and the 6 x 6
principal Pfaffians of 11 7 also generate the ideal of o2 (X).

@ [(03(X)) is even more interesting (next slide).

o I(04(X)) = Li<(ag4)- Iro<a and Iy,<4 are trivial.
04(X) is defined by the 10 x 10 principal Pfaffians of 11 7.

o [(05(X)) was previously known: o5(X) is defective; a hypersurface

in P? defined by the Pfaffian of ¥y r, [Toeplitz] cf. [Ottaviani].
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Main Theorem in case X = Seg (P? x vy(P?)) C P*

o 03(X) requires minors/Pfaffians from both ¢y r and ¢ r (and,
unlike the case of 02(X), the Pfaffians from ;7 do not arise from
an alternative flattening).

o We saw that 03(X) is defined by the maximal minors of ¢y 7 as
well as the 8 x 8 principal Pfaffians of ¢ 7. Neither I <3 nor
I, <6 is sufficient to generate the ideal of o3(X).

o In fact, neither I,,<3 nor I, <¢ is sufficient to define o3(X) even
set-theoretically. For I, <3, this follows from the fact that a
generic element y € ¥, <3 has k1(y) = 8. For I, <¢, check that if

3
= Zuz ® (V1 @ Vg1 +vip1 @ 1) € U @S2V,
i=1
then k(x) = (4,6,4), and hence [z] € Xy, <6 but [z] ¢ o3(X).
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Limits of our equations

@ Main theorem says that I(;, s, ,) defines o (P2 x vo (P 1)) for r < 5.
@ When r = 6 we do not know if I(g 196y defines o6(P? x vy (P"71)).

o When r =7, I(714,7) does not define o7(P? x v (P"1)) even
set-theoretically for dimension reasons.

@ Note for r < 3 if we include the equations for Subs, —
(r + 1) x (r + 1) minors of the flattening U — S?V* — we have
defining equations for o, (P™~! x vy(P"~1)) for all m,n.
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How to use these equations in practice

o Given a partially symmetric tensor 7' € U* ® S?V*, to find the
border rank r of T' with » < 5 and for dimU = 3 and dimV = n,
one needs only check the ranks of the two matrices v r and 91 T,
a fast computation.

@ Recently we have found a tensor decomposition algorithm that
uses these equations, (O-,Ottaviani 2011). Ideas are related to
Generalized Eigenvectors (Cartwright-Sturmfels 2010) and
generalizations of the equations here (Landsberg-Ottaviani 2011).
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Thanks!

Rank



