## Defining Equations of Secant Varieties to Segre-Veronese Varieties

Luke Oeding

University of California, Berkeley

October 8, 2011

#### Joint work with Dustin Cartwright and Daniel Erman

Oeding supported by NSF IRFP (#0853000) while at the University of Florence.

Luke Oeding (UC Berkeley)

Equations for Border Rank

October 8, 2011

#### Partially symmetric tensors (in coordinates)

Choose bases  $u_1, \ldots, u_m$  of  $U^* \cong \mathbb{C}^m$  and  $v_1, \ldots, v_n$  of  $V^* \cong \mathbb{C}^n$ . In coordinates  $T \in U^* \otimes S^2 V^*$  is

$$T = \sum_{i,j,k} T_{ijk} u_i \otimes v_j \otimes v_k$$

with symmetry:  $T_{ijk} = T_{ikj}$ . Collect terms:

$$T = \sum_{i} u_i \otimes \sum_{j,k} T_{ijk} v_j \otimes v_k = \sum_{i} u_i \otimes A_i$$

with  $A_i \in S^2 V^*$ , T is a collection of m symmetric  $n \times n$  matrices.

#### Secant varieties and partially symmetric tensors

- Partially symmetric tensors:  $T \in U^* \otimes S^2 V^*$ .
- Segre-Veronese variety: Seg  $(\mathbb{P}U^* \times v_2(\mathbb{P}V^*))$  = projective variety of rank-1 partially symmetric tensors, i.e. tensors of the form  $[T] = [u \otimes v \otimes v].$
- Rank: min r, s.t.  $T = \sum_{i=1}^{r} u_i \otimes v_i \otimes v_i$ , with  $u_i \in U^*$ ,  $v_i \in V^*$ .
- Secant variety:  $\sigma_r (\text{Seg}(\mathbb{P}U^* \times v_2(\mathbb{P}V^*))) = \text{Zariski closure of rank-}r \text{ partially symmetric tensors.}$
- T has border rank-r if  $[T] \in \sigma_r$  but  $[T] \notin \sigma_{r-1}$ .
- How do we determine the border rank of a given T?

# An appearance in Signal Processing (cf. A. Slapak and A. Yeredor 2010)

- Let  $\varphi(\vec{x})$  be a cumulant generating function.
- Construct the (symmetric) Hessian matrix  $A_s = \left(\frac{\partial^2 \varphi}{\partial x_i \partial x_j}\right) (\vec{y}_s)$  for each point  $\vec{y}_s$ . Sampling  $\varphi$  at m different points, one constructs a partially symmetric tensor  $u_1 \otimes A_1 + \cdots + u_m \otimes A_m \in U^* \otimes S^2 V^*$ .
- The matrix equations I will describe can be used to study small border ranks of such tensors in the case m = 3 and  $r \leq 5$ .
- When  $r \leq 3$  we can also let m be arbitrary.
- A tensor decomposition may be desired. The border rank of this tensor is also useful information.

#### Equations from flattenings

Realize  $T = \sum_{i} u_i \otimes A_i$  as a linear map (a matrix) via inclusion:  $U^* \otimes S^2 V^* \subset (U^* \otimes V^*) \otimes V^*.$ 

$$\psi_{0,T} \colon V \xrightarrow{\begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix}} U^* \otimes V^*$$

Construction is linear in T:

$$\psi_{0,T} + \psi_{0,T'} = \psi_{0,T+T'}$$

$$\begin{pmatrix} A_1\\A_2\\\vdots\\A_m \end{pmatrix} + \begin{pmatrix} A'_1\\A'_2\\\vdots\\A'_m \end{pmatrix} = \begin{pmatrix} A_{1+A'_1}\\A_{2+A'_2\\\vdots\\A_{m+A'_m} \end{pmatrix}$$

Luke Oeding (UC Berkeley)

Equations for Border Rank October 8, 2011

#### Equations from flattenings

Realize  $T = \sum_{i} u_i \otimes A_i$  as a linear map (a matrix) via inclusion:  $U^* \otimes S^2 V^* \subset (U^* \otimes V^*) \otimes V^*.$ 

$$\psi_{0,T} \colon V \xrightarrow{(A_1 \ A_2 \ \dots \ A_m)^t} U^* \otimes V^*$$

Upper bound on rank: Let  $A_1 = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}$ ,  $A_i = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}$ , i = 2..m

$$\psi_{0,T} = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & \ddots & 0 & 0 & \ddots & 0 & \dots & 0 \end{pmatrix}^t$$

Let  $\kappa_0 = Rank(\psi_{0,T})$ . Note:  $Rank(T) = 1 \Rightarrow \kappa_0 = 1$ :  $\therefore$  subadditivity of rank:  $Rank(T) = r \Rightarrow \kappa_0 \leq r$ Let  $I_{\kappa_0 \leq r}$  = ideal generated by  $(r+1) \times (r+1)$  minors of  $\psi_{0,T}$ :  $I_{\kappa_0 \leq r}$  are necessary conditions for  $brank(T) \leq r$ .

Luke Oeding (UC Berkeley)

## Partially symmetric subspace varieties

#### Definition

The subspace variety  $\operatorname{Sub}_{m',n'}$  is the variety of tensors  $x \in (U^* \otimes S^2 V^*)$ such that there exist vector spaces  $\widetilde{U}^* \subset U^*$  and  $\widetilde{V}^* \subset V^*$  of dimensions m' and n' respectively with  $x \in (\widetilde{U}^* \otimes S^2 \widetilde{V}^*) \subset (U^* \otimes S^2 V^*)$ .

 $T \in \operatorname{Sub}_{m',n'}$  implies that after changing coordinates,

$$\psi_{0,T} = \left( \begin{array}{ccc} A_1' & A_2' & \cdots & A_{m'}' & 0 & \cdots & 0 \end{array} \right)^t,$$

with  $A'_i = \begin{pmatrix} B_i & 0 \\ 0 & 0 \end{pmatrix}$  and  $B_i$  a symmetric  $n' \times n'$  matrix. Equations of flattenings define this variety (see next slide).

Luke Oeding (UC Berkeley)

October 8, 2011

## Partially symmetric subspace varieties

A straightforward adaptation of an argument in [Landsberg-Weyman] using Weyman's geometric technique implies that  $\operatorname{Sub}_{m',n'}$  is normal with rational singularities. Moreover

#### Proposition (Cartwright-Erman-O.)

The defining ideal of  $\operatorname{Sub}_{m,n'}$  equals  $I_{\kappa_0 \leq n'}$  i.e. the  $(n'+1) \times (n'+1)$ minors of the flattening  $V \to U^* \otimes V^*$ . Moreover, the defining ideal of  $\operatorname{Sub}_{m',n'}$  is the ideal generated by  $I_{\kappa_0 \leq n'}$ and the  $(m'+1) \times (m'+1)$  minors of the flattening  $U \to S^2 V^*$ .

Proof involved representation theory, commutative algebra and algebraic geometry.

C. Raicu has recently proved that for any Segre-Veronese variety X, and  $r \leq 2$ , the ideal I(X) is generated by  $3 \times 3$  minors of flattenings.

## Equations from flattenings

- Have two flattenings  $V \to U^* \otimes V^*$  and  $U \to S^2 V^*$ .
- Fact: for r = 1, 2, the  $(r + 1) \times (r + 1)$  minors of flattenings are necessary and sufficient conditions for  $brank(T) \le r$ .
- Ex.:  $T \in \mathbb{C}^3 \otimes S^2 \mathbb{C}^4$ . Generic border rank is 6.
  - Conditions for  $brank(T) \leq 3$ ?
  - $U \to S^2 V^*$  is a  $3 \times 10$  matrix, useless no  $4 \times 4$  minors.

 $V \to U^* \otimes V^*$  is a  $4 \times 12$  matrix,  $4 \times 4$  minors necessary, but not sufficient.

- Conditions for  $brank(T) \leq 4$ ?
- Both flattenings are useless no  $5 \times 5$  minors!
- Geometric statement:  $\sigma_4 \left(\mathbb{P}^2 \times v_2(\mathbb{P}^3)\right) \rightleftharpoons \mathbb{P}^{29}$ , but  $I_{\kappa_0 \leq 4}$  is trivial.
  - $I_{\kappa_0 \leq r}$  is only non-trivial when  $r \leq n = \dim(V)$ .
- Need more equations to determine border ranks!

## New equations: History

- Symmetric: Aronhold's invariant (1849) is the equation for  $\sigma_3(v_3(\mathbb{P}^2)) \subsetneq \mathbb{P}^9$ .
- Partially symmetric: E. Toeplitz (1877) essentially gave the equation for  $\sigma_5 (\mathbb{P}^2 \times v_2(\mathbb{P}^3)) \subseteq \mathbb{P}^{29}$ .
- Unrestricted: V. Strassen (1983) gave the equation for  $\sigma_4 \left( \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2 \right) \subsetneq \mathbb{P}^{26}$
- Ubiquitous: G. Ottaviani (2007) united and generalized all three of these equations with a uniform construction we call exterior flattenings.

#### Exterior flattenings

Have a natural inclusion  $U^* \subset \bigwedge^2 U^* \otimes \bigwedge^1 U$ . Construct a new linear map via the inclusion  $U^* \otimes S^2 V^* \subset \left(V^* \otimes \bigwedge^1 U\right) \otimes \left(V^* \otimes \bigwedge^2 U^*\right)$ . Fix m = 3. With  $T = \sum_i u_i \otimes A_i$ , we choose a good basis and write

$$\psi_{1,T}\colon V\otimes \bigwedge^{1} U^{*} \xrightarrow{\begin{pmatrix} 0 & A_{3} & -A_{2} \\ -A_{3} & 0 & A_{1} \\ A_{2} & -A_{1} & 0 \end{pmatrix}} V^{*}\otimes \bigwedge^{2} U^{*}$$

Note  $A_i \in S^2 V^* \Rightarrow \psi_{1,T}$  is skew-symmetric  $\Rightarrow$  rank is even. Construction is linear in T:

$$\psi_{1,T} + \psi_{1,T'} = \psi_{1,T+T'}$$

$$\begin{pmatrix} 0 & A_3 & -A_2 \\ -A_3 & 0 & A_1 \\ A_2 & -A_1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & A_3' & -A_2' \\ -A_3' & 0 & A_1' \\ A_2' & -A_1' & 0 \end{pmatrix} = \begin{pmatrix} 0 & A_3 + A_3' & -A_2 - A_2' \\ -A_3 - A_3' & 0 & A_1 + A_1' \\ A_2 + A_2' & -A_1 - A_1' & 0 \end{pmatrix}$$

Luke Oeding (UC Berkeley)

#### Exterior Flattenings - new equations for border rank:

Let 
$$\kappa_1 = \kappa_1(T) = Rank(\psi_{1,T}).$$
  
Let  $A_1 = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}, A_i = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}, i = 2..m.$   
Note:  $Rank(T) = 1 \Rightarrow \kappa_1 = 2:$ 

$$\psi_{1,T} = \begin{pmatrix} 0 & A_3 & -A_2 \\ -A_3 & 0 & A_1 \\ A_2 & -A_1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \begin{pmatrix} 0 & \dots & 0 \\ 0 & \ddots & 0 \end{pmatrix} & \begin{pmatrix} 0 & \dots & 0 \\ 0 & \ddots & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & \dots & 0 \\ 0 & \ddots & 0 \end{pmatrix} & \begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & \dots & 0 \\ 0 & \ddots & 0 \end{pmatrix} \begin{pmatrix} -1 & \dots & 0 \\ 0 & \ddots & 0 \end{pmatrix}, \quad 0 \end{pmatrix}$$

: subadditivity of rank:  $Rank(T) = r \Rightarrow \kappa_1 \leq 2r$ Let  $I_{\kappa_1 \leq 2r}$  = ideal generated by  $2(r+1) \times 2(r+1)$  Pfaffians of  $\psi_{1,T}$ .  $I_{\kappa_1 \leq 2r}$  are necessary conditions for  $brank(T) \leq r$ .

October 8, 2011

Exterior flattenings more generally

Include 
$$U^* \otimes S^2 V^* \subset \left( V^* \otimes \bigwedge^j U \right) \otimes \left( V^* \otimes \bigwedge^{j+1} U^* \right).$$
  
Example  $m = 4$ : Let  $T = \sum_{i=1}^4 u_i \otimes A_i$ . In suitable coordinates:

$$\begin{split} \psi_{0,T} \colon V \otimes \bigwedge^0 U^* \xrightarrow{(A_1 \ A_2 \ A_3 \ A_4)^t} V^* \otimes \bigwedge^1 U^*, \\ & \left( \begin{array}{c} 0 & A_3 & -A_2 & 0 \\ -A_3 & 0 & A_1 & 0 \\ A_2 & -A_1 & 0 & 0 \\ A_4 & 0 & 0 & -A_1 \\ 0 & A_4 & 0 & -A_2 \end{array} \right) \\ \psi_{1,T} \colon V \otimes \bigwedge^1 U^* \xrightarrow{(A_1 \ A_2 \ A_3 \ A_4 \ A_5 \$$

In general one finds  $Rank(T) \leq r \Rightarrow \kappa_j(T) \leq r {m-1 \choose j}$ .

Luke Oeding (UC Berkeley)

48

4194304

Equations for border rank,  $\dim(U) = 3$ 

#### Definition

Let  $c = (c_0, c_1, c_2)$ .  $I_{\kappa \leq c}$  = ideal generated by  $I_{\kappa_j \leq c_j}$  for j = 1, 2, 3. Define  $\Sigma_{\kappa_i \leq c_i}$  and  $\Sigma_{\kappa \leq c}$  to be the subschemes (subvarieties) of  $\mathbb{P}(U^* \otimes S^2 V^*)$  defined by the ideals  $I_{\kappa_i \leq c_i}$  and  $I_{\kappa \leq c}$  respectively.

Already shown necessary conditions for border rank  $\leq r$ . Geometric statement:

#### Proposition

Fix 
$$r \geq 1$$
. If  $c = (r, 2r, r)$  then  $\sigma_r(X) \subseteq \Sigma_{\kappa \leq c}$ .

We want to know when the necessary conditions are also sufficient.

## Main Theorem

#### Theorem (Cartwright-Erman-O.)

Let  $m = \dim(U) = 3$  and let  $X = \text{Seg}(\mathbb{P}U^* \times v_2(\mathbb{P}V^*))$ . For  $r \leq 5$ , the defining ideal of the variety  $\sigma_r(X)$  is  $I_{\kappa \leq (r,2r,r)}$ .

#### What does it mean?

#### Restatement for Practical Use

Let  $T = u_1 \otimes A_1 + u_2 \otimes A_2 + u_3 \otimes A_3$ ,  $A_i$  symmetric  $n \times n$  matrices. Suppose  $r \leq 5$ . The  $(r+1) \times (r+1)$  minors of  $\psi_{0,T}$  and  $2(r+1) \times 2(r+1)$  Pfaffians of  $\psi_{1,T}$  are necessary and sufficient conditions to decide the border rank r of T.

October 8, 2011

419430

## Idea of proof:

#### Theorem (Cartwright-Erman-O.)

For  $r \leq 5$ , the defining ideal of the variety  $\sigma_r(X)$  is  $I_{\kappa \leq (r,2r,r)}$ .

Proof involves a mixture of commutative algebra, representation theory and algebraic geometry.

We use the result on subspace varieties of  $U^* \otimes S^2 V^*$  and prove that the ideal of  $\sigma_r(\mathbb{P}^1 \times v_2(\mathbb{P}^{n-1})) = \operatorname{Sub}_{2,r}$  is  $I_{\kappa_0 \leq r}$ .

Next we handle the case n = r by relating  $I_{\kappa_1 \leq 2r}$  to the ideal of the variety of commuting symmetric matrices. This requires the use Erman and Velasco's bound for the dimension of this variety which holds for  $r \leq 5$ .

Finally, using again a connection to the subspace variety, we reduce the general case to that of the case n = r.

## Asside: representations for equations

Representation theory allows us to compare equations constructed in different ways via a Schur module description. It also tells us the dimension of the space of equations. Use LiE for experiments.

#### Proposition (Cartwright-Erman-O.)

As  $\operatorname{GL}(U) \times \operatorname{GL}(V)$ -modules we have the following (multiplicity free!):  $(I_{\kappa_0 \leq r})_{r+1} = \bigoplus_{|\pi|=r+1} S_{\pi}U \otimes S_{1^{r+1}+\pi'}V,$ 

and when dim(U) is 3,  

$$(I_{\kappa_1 \le 2r})_{r+1} = \bigoplus_{|\pi|=r+1} S_{\pi}U \otimes S_{(3)^{r+1}-\pi'}V,$$

where the partition  $\pi = (\pi_1, \pi_2, \pi_3)$  (at most 3 parts) and  $\pi_3 \ge r + 1 - n$ .  $\pi'$  is the conjugate partition to  $\pi$ , and  $S_{\pi}W$  =the associated (irreducible) GL(W)-module.



Asside: representations for equations

A representation of polynomials comes from  $\kappa_0$ -conditions if and only if it is of the form:

partition of r+1

partition transposed with a column adjoined



(as long as dimensions allow this)



## Asside: representations for equations

In the case dim U = 3, a representation of polynomials comes from  $\kappa_1$ -conditions if and only if it is of the form:

partition of r+1  $\otimes$  3-wide column with transposed partition excised



(as long as the dimensions allow this)



## Representation Theory example: $Seg(\mathbb{P}^2 \times v_2(\mathbb{P}^3))$ .

#### Example (Degree 3)

The 3 × 3 minors of  $U \to S^2 V^*$  are included in  $(I_{\kappa \leq (2,4,2)})_3$ :



The blue modules are the  $3 \times 3$  minors of  $U \to S^2 V^*$ . Can verify this by computing  $\bigwedge^3(U) \otimes \bigwedge(S^2 V)$  with Lie:



## Representation Theory example: $Seg(\mathbb{P}^2 \times v_2(\mathbb{P}^3))$ .



Note that  $\dim((I_{\kappa_0 \le 3})_4) = \dim((I_{\kappa_1 \le 6})_4) = 495.$ 

However  $I_{\kappa \leq (3,6,3)} = I_{\kappa_1 \leq 6} + I_{\kappa_0 \leq 3}$  is generated by a 630-dimensional space of quartics. Notice that neither  $I_{\kappa_0 \leq 3}$  nor  $I_{\kappa_1 \leq 6}$  belongs to the other.

Can also verify these statements using a computer (Macaulay2).



Main Theorem in case  $X = \text{Seg}\left(\mathbb{P}^2 \times v_2(\mathbb{P}^3)\right) \subseteq \mathbb{P}^{29}$ 

- $I(\sigma_2(X))$  is generated by the  $3 \times 3$  minors of the flattening  $\psi_{0,T}$ and by the  $3 \times 3$  minors of the flattening  $U \to S^2 V^*$ . Now have alternate description; that the  $3 \times 3$  minors of  $\psi_{0,T}$  and the  $6 \times 6$ principal Pfaffians of  $\psi_{1,T}$  also generate the ideal of  $\sigma_2(X)$ .
- $I(\sigma_3(X))$  is even more interesting (next slide).
- $I(\sigma_4(X)) = I_{\kappa \le (4,8,4)}$ .  $I_{\kappa_0 \le 4}$  and  $I_{\kappa_2 \le 4}$  are trivial.  $\sigma_4(X)$  is defined by the 10 × 10 principal Pfaffians of  $\psi_{1,T}$ .
- $I(\sigma_5(X))$  was previously known:  $\sigma_5(X)$  is defective; a hypersurface in  $\mathbb{P}^{29}$  defined by the Pfaffian of  $\psi_{1,T}$ , [Toeplitz] cf. [Ottaviani].



## Main Theorem in case $X = \text{Seg}\left(\mathbb{P}^2 \times v_2(\mathbb{P}^3)\right) \subseteq \mathbb{P}^{29}$

- $\sigma_3(X)$  requires minors/Pfaffians from both  $\psi_{0,T}$  and  $\psi_{1,T}$  (and, unlike the case of  $\sigma_2(X)$ , the Pfaffians from  $\psi_{1,T}$  do not arise from an alternative flattening).
- We saw that  $\sigma_3(X)$  is defined by the maximal minors of  $\psi_{0,T}$  as well as the  $8 \times 8$  principal Pfaffians of  $\psi_{1,T}$ . Neither  $I_{\kappa_0 \leq 3}$  nor  $I_{\kappa_1 \leq 6}$  is sufficient to generate the ideal of  $\sigma_3(X)$ .
- In fact, neither  $I_{\kappa_0 \leq 3}$  nor  $I_{\kappa_1 \leq 6}$  is sufficient to define  $\sigma_3(X)$  even set-theoretically. For  $I_{\kappa_0 \leq 3}$ , this follows from the fact that a generic element  $y \in \Sigma_{\kappa_0 \leq 3}$  has  $\kappa_1(y) = 8$ . For  $I_{\kappa_1 \leq 6}$ , check that if

$$x := \sum_{i=1}^{3} u_i \otimes (v_1 \otimes v_{i+1} + v_{i+1} \otimes v_1) \in U^* \otimes S^2 V^*,$$

then  $\kappa(x) = (4, 6, 4)$ , and hence  $[x] \in \Sigma_{\kappa_1 \leq 6}$  but  $[x] \notin \sigma_3(X)$ .



## Limits of our equations

- Main theorem says that  $I_{(r,2r,r)}$  defines  $\sigma_5(\mathbb{P}^2 \times v_2(\mathbb{P}^{n-1}))$  for  $r \leq 5$ .
- When r = 6 we do not know if  $I_{(6,12,6)}$  defines  $\sigma_6(\mathbb{P}^2 \times v_2(\mathbb{P}^{n-1}))$ .
- When r = 7,  $I_{(7,14,7)}$  does not define  $\sigma_7(\mathbb{P}^2 \times v_2(\mathbb{P}^{n-1}))$  even set-theoretically for dimension reasons.
- Note for  $r \leq 3$  if we include the equations for  $\operatorname{Sub}_{3,n} (r+1) \times (r+1)$  minors of the flattening  $U \to S^2 V^*$  we have defining equations for  $\sigma_r(\mathbb{P}^{m-1} \times v_2(\mathbb{P}^{n-1}))$  for all m, n.



How to use these equations in practice

- Given a partially symmetric tensor  $T \in U^* \otimes S^2 V^*$ , to find the border rank r of T with  $r \leq 5$  and for dim U = 3 and dim V = n, one needs only check the ranks of the two matrices  $\psi_{0,T}$  and  $\psi_{1,T}$ , a fast computation.
- Recently we have found a tensor decomposition algorithm that uses these equations, (O-,Ottaviani 2011). Ideas are related to Generalized Eigenvectors (Cartwright-Sturmfels 2010) and generalizations of the equations here (Landsberg-Ottaviani 2011).



## Thanks!

Luke Oeding (UC Berkeley)

Equations for Border Rank

October 8, 2011

