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Secant varieties
Suppose X is an algebraic variety in PN .

The X-rank of [p] ∈ PN is the min. r such that p =
∑r
i=1 xi with [xi] ∈ X.

The Zariski closure of the points of X-rank r is the r-secant variety to X,
denoted σr(X), and consists of the points in PN of X-border rank r.

Taking the Zariski closure often causes problems.

If p = b⊗a⊗a+ a⊗b⊗a+ a⊗a⊗b, with a, b independent,
Rank(p) = 3 but Brank(p) = 2!
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Secant varieties and tensors

Let A = {ai}, B = {bj}, C = {ck}, be C-vector spaces, then the tensor product
A⊗B⊗C has basis elements of the form ai⊗bj⊗ck, with coordinates pijk.

Segre variety (rank 1 tensors): (Independence model) Defined by

Seg : PA× PB × PC −→ P
(
A⊗B⊗C

)
([u], [v], [w]) 7−→ [u⊗v⊗w].

In coordinates: pi,j,k = uivjwk.

The rth secant variety of a variety X ⊂ Pn: (Mixture model)

σr(X) :=
⋃

x1,...,xr∈X
P(span{x1, . . . , xr}) ⊂ Pn.

General points of σr(Seg(PA× PB × PC)) have the form [
∑r
s=1 u

s⊗vs⊗ws],
or in coordinates: pi,j,k =

∑r
s=1 u

s
iv
s
jw

s
k.

(*Might also work over R or ∆-probability simplex, but not today.)
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Some Applications of Secant Varieties

Classical Algebraic Geometry: When can a given projective variety

X ⊂ Pn be isomorphically projected into Pn−1?

Determined by the dimension of the secant variety σ2(X).

Algebraic Complexity Theory: Bound the border rank of algorithms via
equations of secant varieties. Berkeley-Simons program Fall’14

Algebraic Statistics and Phylogenetics:
Given contingency tables for DNA of several species, determine the
correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

Signal Processing: Blind identification of under-determined mixtures,
analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user’s signal.

Computer Vision, Neuroscience, Quantum Information Theory,
Chemistry...
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First questions for secant varieties

Given X ⊂ PN we ask:

1 [Dimensions] What is the dimension of σr(X)?
– When does σr(X) fill the ambient PN? (defectivity)

2 [Equations] What are the polynomial defining equations of σr(X)?

3 [Generic Identifiability] For generic x ∈ PN , does x have a unique
expression as a sum of points from X? (ignoring trivialities)

4 [Decomposition] For my favorite x ∈ PN , can you find an expression of x
as a sum of points from X?

Sometimes 2⇒ 1⇒ 3⇒ 4
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Tensors with different types of symmetry

Suppose A,B,C are vector spaces over C. Hypermatrices, symmetric,
partially symmetric, skew-symmetric, and partially skew-symmetric tensors:

Space Hypermatrix Symmetry

A⊗B⊗C (Ti,j,k)

SdA (Ti1,...,id) Ti1,...,id = Tσ(i1),...,σ(id) for all σ ∈ Sd

A⊗S2B (Ti,j,k) Ti,j,k = Ti,k,j for all i, j, k∧k+1A (Ti0,...,ik ) Ti0,...,ik = sgn(σ)Tσ(i0),...,σ(ik) for all σ ∈ Sk+1

A⊗
∧k+1B (Ti,j0,...,jk ) Ti,j0,...,jk = sgn(σ)Ti,σ(j0),...,σ(jk) for all σ ∈ Sk+1
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Partially skew-symmetric tensors (in coordinates)

Choose bases u1, . . . , um of A ∼= Cm and v1, . . . , vn of B ∼= Cn.
In coordinates T ∈ A⊗

∧2
B is

T =
∑
i,j,k

Tijkui⊗vj⊗vk

with symmetry: Tijk = −Tikj .
Collect terms:

T =
∑
i

ui⊗
∑
j,k

Tijkvj⊗vk =
∑
i

ui⊗Ti

with Ti ∈
∧2
B, T is a collection of m skew-symmetric n× n matrices.
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Tensors and examples of classical algebraic varieties
Consider each symmetry type and the (classical) variety of “rank-1” tensors:

Name Notation Points Ambient Space

Segre Seg (PA× PB × PC) [a⊗b⊗c] P(A⊗B⊗C)

Veronese νd(PA) [a⊗ · · ·⊗a] P(SdA)

Segre-Veronese Seg (PA× ν2(PV )) [a⊗b⊗b] P(A⊗S2B)

Grassmannian G(k,A) [a0∧ · · · ∧ak] P
(∧k+1A

)
Segre-Grassmann Seg(PA×G(k,B)) [a⊗(b0∧ · · · ∧bk)] P(A⊗

∧k+1B)

In each case a rank 1 tensor can be put in the form (in an appropriate basis):

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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How to email the Segre-Grassmann Seg(PA×G(k,B))

KK = QQ;

makeRank1 = (m,k,n)->(

E = random(KK^(m+1),KK^(n+1));

e = gens minors(k+1,E);

v = random(KK^(m+1),KK^1);

matrix {flatten entries(v*e)}

)

makeRank1(2,2,5) -- a point on Seg(P^2 x G(2,5))

sum(5,i->makeRank1(2,2,5)) -- a point on sig_5(Seg(P^2 x G(2,5)))

(In practice I’m more careful to name the coordinates and avoid collisions.)
Let v = (v0, . . . , vm), and let E = (ei,j) be a (k + 1)× (n+ 1) matrix.
Get a (m+ 1)×

(
n+1
k+1

)
vector for a point on Seg(Pm ×G(k, n)) as

(vi ·∆I(E))i,I ,

where ∆I – maximal minor of E with columns I = (i1, . . . , ik+1).
Pseudo-random points on σr(Seg(Pm ×G(k, n))): let v and E have random
entries, and summing r pseudorandom points of Seg(Pm ×G(k, n)).
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What is a flattening?
Express a tensor T =

∑
i,j,k

pijkai⊗bj⊗ck ∈ A⊗B⊗C as a matrix (in 3 ways):

T =
∑
i

ai⊗

∑
j,k

pijkbj⊗ck

 ∈ A⊗(B⊗C),

T =
∑
j

bj⊗

∑
i,k

pijkai⊗ck

 ∈ B⊗(A⊗C),

T =
∑
k

∑
i,j

pijkai⊗bj

⊗ck ∈ (A⊗B)⊗C.

Example: T = [pijk] ∈ C3⊗C3⊗C3 to C3⊗(C3⊗C3) ∼= C3⊗C9 flattens to:

ψ0,T =

p111 p121 p131
p211 p221 p231
p311 p321 p331

∣∣∣∣∣∣
p112 p122 p132
p212 p222 p232
p312 p322 p332

∣∣∣∣∣∣
p113 p123 p133
p213 p223 p233
p313 p323 p333


When they exist, (r + 1)× (r + 1) minors of ψ0,T are (some) equations of
σr(PA× PB × PC).
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Equations from flattenings
Realize T ∈ A⊗B⊗C = A⊗(B⊗C) as a linear map (a matrix)

ψ0,T : A∗
(T1 T2 ... Tl )

t

−−−−−−−−−−→ B⊗C

Rank 1 case: Let T1 =

(
1 ··· 0

0
. . . 0

)
, Ti =

(
0 ... 0

0
. . . 0

)
, i = 2 . . .m

ψ0,T =

(
1 ... 0 0 ··· 0 ... 0 ··· 0

0
. . . 0 0

. . . 0 ... 0
. . . 0

)t
If Rank(T ) = 1, then Rank(ψ0,T ) = 1. Construction is linear in T :

ψ0,T + ψ0,T ′ = ψ0,T+T ′ T1

T2

...
Tl

+


T ′1
T ′2
...
T ′l

 =


T1+T

′
1

T2+T
′
2

...
Tl+T

′
l


Rank(ψ0,T ) + Rank(ψ0,T ′) ≤ Rank(ψ0,T + ψ0,T ′) = ψ0,T+T ′

By subadditivity of rank, if Rank(T ) = r, then Rank(ψ0,T ) ≤ r.
The (r + 1)× (r + 1) minors of ψ0,T are necessary conditions for Brank(T ) ≤ r.
However, flattenings are trivial when Rank(T ) ≥ min{dimA,dimB, dimC}.
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Symmetric Flattenings

Consider φ ∈ SymdV as a symmetric multilinear form:
φ eats d vectors (symmetrically) and spits out a number.

If we only feed s vectors to φ, it still wants to eat d− s more.
So we can construct a linear map

φs,d−s : Syms(V ∗)→Symd−sV

[v1, . . . , vs] 7→φ(v1, . . . , vs, , . . . , )

Macaulay (1916) showed that Brankφ ≥ Rankφs,d−s for all 1 ≤ s ≤ d.

The minors of φs,d−s are called minors of Catalecticants.
(Also called symmetric flattenings or special Hankel matrices).

Give some equations for the secant varieties to Veronese varieties.
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Flattenings and the Segre variety

Classical: the ideal of any Segre is generated by all 2× 2 minors of flattenings.

Theorem (Raicu (2012), (Garcia, Stillman and Sturmfels Conj.))

The prime ideal of σ2(Seg(PV1 × · · · × PVn)) is generated by the 3× 3 minors
of flattenings.

Built on work of Landsberg-Manivel, Landsberg-Weyman, Geramita et al.,
Allman-Rhodes.

Raicu also proved the stronger analogous result for the secant variety of any
Segre-Veronese.

[Michalek-O.-Zwiernik (2014)] gave a toric proof of the scheme-theoretic
version that works in any characteristic using “secant cumulants.”

Flattenings run out quickly: σ3(Seg(P2 × P2 × P2)) has no equations from
flattenings since there are no 4× 4 minors of 3× 9, ([Strassen’83, Y. Qi’14].)
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Exterior flattenings

Suppose T ∈ A⊗B⊗C. Have a natural inclusion A ⊂
∧2
A⊗A∗.

Construct a new linear map via the inclusion

A⊗B⊗C ⊂
∧2
A⊗A∗⊗B⊗C = (A∗⊗B)⊗

(∧2
A⊗C

)
.

Fix dim(A) = 3. With T =
∑
i ui⊗Ti, we choose a good basis and write

ψ1,T : A⊗B∗

(
0 T3 −T2

−T3 0 T1

T2 −T1 0

)
−−−−−−−−−−−−→

∧2
A⊗C.

Basic idea:

ψ1,T+T ′ = ψT + ψT ′ construction is linear in T

Rank(T ) = 1⇒ Rank(ψT ) = 2 base case

∴ Rank(T ) = r ⇒ Rank(ψT ) ≤ 2r subadditivity of matrix rank

The (2r+ 1)× (2r+ 1) minors of ψ1,T are necessary conditions for Brank(T ) ≤ r.
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Exterior Flattenings: Rank(T ) = 1⇒ Rankψ1,T = 2

Let T1 =

(
1 ··· 0

0
. . . 0

)
, Ti =

(
0 ... 0

0
. . . 0

)
, i = 2..m.

ψ1,T =

(
0 T3 −T2

−T3 0 T1

T2 −T1 0

)
=


0

(
0 ... 0

0
. . . 0

) (
0 ... 0

0
. . . 0

)
(

0 ... 0

0
. . . 0

)
0

(
1 ··· 0

0
. . . 0

)
,(

0 ... 0

0
. . . 0

) (−1 ··· 0

0
. . . 0

)
, 0


Result is invariant under natural changes of coordinates.

Oeding (Auburn, NIMS) Secants, Equations and Applications August 9, 2014 15 / 34



Exterior flattenings (partially symmetric case)

Have natural inclusions A ⊂
∧2
A⊗A∗, S2B ⊂ B⊗B.

Construct a new linear map via the inclusion A⊗S2B ⊂ (B⊗A∗)⊗
(
B⊗

∧2
A
)

.

Fix m = 3. With T =
∑
i ui⊗Ti, we choose a good basis and write

ψ1,T : B∗⊗A

(
0 T3 −T2

−T3 0 T1

T2 −T1 0

)
−−−−−−−−−−−−→ B⊗

∧2
A.

Note Ti ∈ S2B ⇒ ψ1,T is skew-symmetric ⇒ rank is even.
Construction is linear in T :

ψ1,T + ψ1,T ′ = ψ1,T+T ′(
0 T3 −T2

−T3 0 T1

T2 −T1 0

)
+

(
0 T ′3 −T

′
2

−T ′3 0 T ′1
T ′2 −T

′
1 0

)
=

(
0 T3+T

′
3 −T2−T ′2

−T3−T ′3 0 T1+T
′
1

T2+T
′
2 −T1−T ′1 0

)

2(r + 1)× 2(r + 1) Pfaffians of ψ1,T are necessary conditions for Brank(T ) ≤ r.
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Exterior flattenings more generally

Include A⊗B⊗C ⊂
(
B⊗

∧j
A∗
)
⊗
(
C⊗
∧j+1

A
)

.

Example dim(A) = l = 4: Let T =
∑4
i=1 ui⊗Ti. In suitable coordinates:

ψ0,T : B∗⊗
∧0
A∗

(T1 T2 T3 T4 )t−−−−−−−−−−→ C⊗
∧1
A,

ψ1,T : B∗⊗
∧1
A∗


0 T3 −T2 0
−T3 0 T1 0
T2 −T1 0 0
T4 0 0 −T1

0 T4 0 −T2

0 0 T4 −T3


−−−−−−−−−−−−−−−→ C⊗

∧2
A,

ψ2,T : B∗⊗
∧2
A∗

−T4 0 0 0 T3 −T2

0 −T4 0 −T3 0 T1

0 0 −T4 T2 −T1 0
T1 T2 T3 0 0 0


−−−−−−−−−−−−−−−−−−−−−→ C⊗

∧3
A

ψ3,T : B∗⊗
∧3
A∗

(T1 T2 T3 T4 )−−−−−−−−−→ C⊗
∧4
A.

In general one finds Rank(T ) ≤ r ⇒ Rank(ψj,T ) ≤ r
(
l−1
j

)
.

We want to know when the necessary conditions are also sufficient.
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Subspace varieties

Definition

The subspace variety Subp,q,r(A⊗B⊗C) is the variety of tensors
[T ] ∈ P(A⊗B⊗C) such that there exist subspaces Cp ⊆ A,Cq ⊆ B,Cr ⊆ C,
and [T ] ∈ P(Cp⊗Cq⊗Cr).

Theorem (Thm. 3.1, Landsberg–Weyman ’07)

Subp,q,r(A⊗B⊗C) is normal with rational singularities. Its ideal is generated
by the minors of flattenings;(∧p+1

A∗⊗
∧p+1

(B∗⊗C∗)
)
⊕
(∧q+1

B∗⊗
∧q+1

(A∗⊗C∗)
)

⊕
(∧r+1

(A∗⊗B∗)⊗
∧r+1

C∗
)

Key Point: Subr,r,r ⊇ σr(PA× PB × PC) and therefore get some
(determinantal) equations of the secant varieties.

Note: C. Raicu has recently proved that for any Segre-Veronese variety X,
and r ≤ 2, the ideal I(σ2(X)) is generated by 3× 3 minors of flattenings.
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Partially symmetric subspace and secant varieties

Definition

The subspace variety Subp,q(A⊗S2B) is the variety of tensors [T ] ∈ P(A⊗S2B)
such that there exist subspaces Cp ⊆ A,Cq ⊆ B, and [T ] ∈ P(Cp⊗S2Cq).

T ∈ Subp,q(A⊗S2B) implies that after changing coordinates,

ψ0,T = ( T ′1 T
′
2 ··· T

′
m′ 0 ··· 0 )

t
,

with T ′i =
(
Bi 0
0 0

)
and Bi a symmetric q × q matrix.

Proposition (Cartwright-Erman-O. (2012))

The defining ideal of Subp,q(A⊗S2B) is generated by
the (p+ 1)× (p+ 1) minors of the flattening B∗ → A⊗B
and the (q + 1)× (q + 1) minors of the flattening A∗ → S2B.

Theorem (Cartwright-Erman-O. (2012) )

For r ≤ 5, the ideal of σr(Seg(P2 × ν2(PB))) is generated by
(r + 1)× (r + 1) minors of flattenings, and
(2r + 2)× (2r + 2) Pfaffians of exterior flattenings.
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Skew-symmetric subspace varieties

Definition

The subspace variety Subp(
∧k+1

A) is the variety of tensors [T ] ∈ P
(∧k+1

A
)

such that there exist a subspace Cp ⊆ A, and [T ] ∈ P
(∧k+1Cp

)
.

The equations of this variety are mysterious when k ≥ 2:

Proposition (Boralevi-O.(2012)1)

The ideal of the subspace variety Sub5(
∧3C7) ⊂ P34 is generated in degree 3 by

the GL7-modules S(3,1,1,1,1,1,1)C7 (28 cubics) and S(2,2,2,1,1,1)C7 (224 cubics).

The space of 28 cubics is vector space isomorphic to quadrics on 7 variables.
The space of 224 cubics is inherited from a space of 20 cubics on 6 variables,
which is vector space isomorphic the span of the 3× 3 minors of a 3× 6 matrix.

Used Weyman’s “Geometric Technique,” Representation Theory, Bott’s
algorithm, and careful combinatorial book-keeping.

1 Appeared in [J.M. Landsberg, Tensors: Geometry and Applications, (p405-407), AMS GSM, vol. 128, (2012)].
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Equations of secant varieties via more general
flattenings

Symmetric: Aronhold’s invariant (1849): σ3(v3(P2)) $ P9.

Partially symmetric: Toeplitz (1877): σ5
(
P2 × ν2(P3)

)
$ P29.

Cartwright-Erman-O. (2012): σr
(
P2 × ν2(Pn)

)
$ P3(n+2

2 )−1, r ≤ 5.

Partially skew-symmetric: Abo-Wan (2013):

σ3`(Seg(P2 ×G(1, 4`+ 2))) $ P3(4`+3
2 )−1.

Unrestricted: Strassen (1983): σ4
(
P2 × P2 × P2)

)
$ P26

Ubiquitous: Ottaviani (2007) united and generalized all of these equations
with a uniform construction we call exterior flattenings.

Landsberg-Ottaviani (2012): Many more cases, much more general.
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Abo-Wan Hypersurfaces: σ3`+2(Seg(P2 ×G(1, 4`+ 2)))

Consider σ5(P2 ×G(1, 6)) ⊂
(
PC3⊗

∧2C7
)

= P(V⊗
∧2
W ).

View T ∈ V⊗
∧2
W ) as an element in

∧2
V ∗⊗

∧2
W , which induces

ϕT : V⊗W ∗ → V ∗⊗W,

Explicitly ϕT is the (21× 21) Kronecker product of two matrices:

ϕT =

 0 v1 −v2
−v1 0 v3
v2 −v3 0

 ⊗


0 e12 e13 e14 e15 e16 e17
−e12 0 e23 e24 e25 e26 e27
−e13 −e23 0 e34 e35 e36 e37
−e14 −e24 −e34 0 e45 e46 e47
−e15 −e25 −e35 −e45 0 e56 e57
−e16 −e26 −e36 −e46 −e56 0 e67
−e17 −e27 −e37 −e47 −e57 −e67 0



Replace vi⊗ejk with xijk we obtain the matrix ϕT = (too big for screen).

Check: Rank(T ) = 1⇒ RankϕT = 4 so Rank(T ) = r ⇒ RankϕT ≤ 4r.

In particular if RankT = 5 then RankϕT ≤ 20, so detϕT vanishes.

Check: Rank(ϕT ) = 21 for random T , so detϕT is non-trivial.
detϕT is an equation of σ5(Seg(P2 ×G(1, 6))). (Verified in Macaulay 2.)
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How to email an exterior flattening

KK = ZZ/101

T = KK[v1, v2, v3]**KK[w12, w13, w14, w15, w16, w17, w23, w24, w25, w26, w27, w34, w35, w36, w37, w45, w46, w47, w56, w57, w67]

Mv = matrix {{0, v1, -v2}, {-v1, 0, v3}, {v2, -v3,0}}

Mw = matrix {{ 0, w12, w13, w14, w15, w16, w17},

{-w12, 0, w23, w24, w25, w26, w27} ,

{-w13, -w23, 0, w34, w35, w36, w37},

{-w14, -w24, -w34, 0, w45, w46, w47},

{-w15, -w25, -w35, -w45, 0, w56, w57},

{-w16, -w26, -w36, -w46, -w56, 0, w67},

{-w17, -w27, -w37, -w47, -w57, -w67, 0 }

K = Mw**Mv

for i from 1 to 6 do print(i, rank diff(K, sum(i, j-> makeRank1())))

R = KK[x112, x212, x312, x113, x213, x313, x114, x214, x314, x115, x215, x315, x116, x216, x316, x117, x217, x317, x123, x223, x323, x124, x224, x324, x125, x225, x325, x126, x226, x326, x127, x227, x327, x134, x234, x334, x135, x235, x335, x136, x236, x336, x137, x237, x337, x145, x245, x345, x146, x246, x346, x147, x247, x347, x156, x256, x356, x157, x257, x357, x167, x267, x367 ]

P = T**R

vwTOx = v1*w12*x112 + v1*w13*x113 + v1*w14*x114 + v1*w15*x115 + v1*w16*x116 + v1*w17*x117 + v1*w23*x123 + v1*w24*x124 + v1*w25*x125 + v1*w26*x126 + v1*w27*x127 + v1*w34*x134 + v1*w35*x135 + v1*w36*x136 + v1*w37*x137 + v1*w45*x145 + v1*w46*x146 + v1*w47*x147 + v1*w56*x156 + v1*w57*x157 + v1*w67*x167 + v2*w12*x212 + v2*w13*x213 + v2*w14*x214 + v2*w15*x215 + v2*w16*x216 + v2*w17*x217 + v2*w23*x223 + v2*w24*x224 + v2*w25*x225 + v2*w26*x226 + v2*w27*x227 + v2*w34*x234 + v2*w35*x235 + v2*w36*x236 + v2*w37*x237 + v2*w45*x245 + v2*w46*x246 + v2*w47*x247 + v2*w56*x256 + v2*w57*x257 + v2*w67*x267 + v3*w12*x312 + v3*w13*x313 + v3*w14*x314 + v3*w15*x315 + v3*w16*x316 + v3*w17*x317 + v3*w23*x323 + v3*w24*x324 + v3*w25*x325 + v3*w26*x326 + v3*w27*x327 + v3*w34*x334 + v3*w35*x335 + v3*w36*x336 + v3*w37*x337 + v3*w45*x345 + v3*w46*x346 + v3*w47*x347 + v3*w56*x356 + v3*w57*x357 + v3*w67*x367

myMat = diff(sub(K,P),vwTox)

mypoly = det(myMat, Strategy => Cofactor);
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Kronecker product



0 0 0 0 x112 −x212 0 x113 −x213 0 x114 −x214 0 x115 −x215 0 x116 −x216 0 x117 −x217
0 0 0 −x112 0 x312 −x113 0 x313 −x114 0 x314 −x115 0 x315 −x116 0 x316 −x117 0 x317
0 0 0 x212 −x312 0 x213 −x313 0 x214 −x314 0 x215 −x315 0 x216 −x316 0 x217 −x317 0
0 −x112 x212 0 0 0 0 x123 −x223 0 x124 −x224 0 x125 −x225 0 x126 −x226 0 x127 −x227

x112 0 −x312 0 0 0 −x123 0 x323 −x124 0 x324 −x125 0 x325 −x126 0 x326 −x127 0 x327
−x212 x312 0 0 0 0 x223 −x323 0 x224 −x324 0 x225 −x325 0 x226 −x326 0 x227 −x327 0

0 −x113 x213 0 −x123 x223 0 0 0 0 x134 −x234 0 x135 −x235 0 x136 −x236 0 x137 −x237
x113 0 −x313 x123 0 −x323 0 0 0 −x134 0 x334 −x135 0 x335 −x136 0 x336 −x137 0 x337
−x213 x313 0 −x223 x323 0 0 0 0 x234 −x334 0 x235 −x335 0 x236 −x336 0 x237 −x337 0

0 −x114 x214 0 −x124 x224 0 −x134 x234 0 0 0 0 x145 −x245 0 x146 −x246 0 x147 −x247
x114 0 −x314 x124 0 −x324 x134 0 −x334 0 0 0 −x145 0 x345 −x146 0 x346 −x147 0 x347
−x214 x314 0 −x224 x324 0 −x234 x334 0 0 0 0 x245 −x345 0 x246 −x346 0 x247 −x347 0

0 −x115 x215 0 −x125 x225 0 −x135 x235 0 −x145 x245 0 0 0 0 x156 −x256 0 x157 −x257
x115 0 −x315 x125 0 −x325 x135 0 −x335 x145 0 −x345 0 0 0 −x156 0 x356 −x157 0 x357
−x215 x315 0 −x225 x325 0 −x235 x335 0 −x245 x345 0 0 0 0 x256 −x356 0 x257 −x357 0

0 −x116 x216 0 −x126 x226 0 −x136 x236 0 −x146 x246 0 −x156 x256 0 0 0 0 x167 −x267
x116 0 −x316 x126 0 −x326 x136 0 −x336 x146 0 −x346 x156 0 −x356 0 0 0 −x167 0 x367
−x216 x316 0 −x226 x326 0 −x236 x336 0 −x246 x346 0 −x256 x356 0 0 0 0 x267 −x367 0

0 −x117 x217 0 −x127 x227 0 −x137 x237 0 −x147 x247 0 −x157 x257 0 −x167 x267 0 0 0
x117 0 −x317 x127 0 −x327 x137 0 −x337 x147 0 −x347 x157 0 −x357 x167 0 −x367 0 0 0
−x217 x317 0 −x227 x327 0 −x237 x337 0 −x247 x347 0 −x257 x357 0 −x267 x367 0 0 0 0
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Bertini team [N. Daleo & J. Hauenstein] to the rescue!
How do we know that the 21× 21 determinant detϕT is irreducible

(and hence minimally defines the ideal of σ5(Seg(P2 ×G(1, 6))))?

A computation in Bertini provides missing ingredient:

Proposition∗

The hypersurface σ5(Seg(P2 ×G(1, 6))) ⊂ P62 has degree 21.

We have an irreducible hypersurface of degree 21 inside of the zero-locus of a
degree 21 equation!

Proposition∗

The hypersurface σ8(Seg(P2 ×G(1, 10))) ⊂ P164 has degree 33.

A similar 33× 33 exterior flattening provides the equation.

Proposition∗

The hypersurface σ5(Seg(P2 ×G(2, 5))) ⊂ P59 has degree 6.

No 6× 6 flattening... So now what?
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Find equations in the ideal

Consider σ5(Seg(P2 ×G(2, 5))) ⊂ P59. Look for equations in R = C[x0, . . . , x59].
The Hilbert function of R starts like this:

d = 1 2 3 4 5 6 . . .
HFR(d) = 60 1830 37820 595665 7624512 82598880 . . .

HFR/I(d) = 0 0 0 0 0 82598879 . . .
dim(Id) = 0 0 0 0 0 1 . . .

To find the space of linear forms in the ideal, compute:

M = matrix apply(60,i-> {makeRank5(2,2,5)} );

rank M

Naively, to find the space of sextics in the ideal: compute 82598880 points on
the variety, evaluate them on the 82598880 monomials of degree 6 and
compute the kernel of the resulting 82598880× 82598880 matrix.
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Symmetry

The symmetry group of

σ5(Seg(P2 ×G(2, 5))) ⊂ P59 = P
(
A⊗
∧2
B
)

is change of coordinates in each factor,

GL(A)×GL(B)

A large group acts so we can use tools from Representation Theory!

This symmetry is a powerful tool and we should exploit it!
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Find equations in the ideal using representation theory

Module notation: Sd
(
A⊗
∧2
B
)

= C[pijk | pijk = −pikj ]d.

Fact: Sd
(
A⊗
∧2
B
)

is a GL(A)×GL(B)-module.

The coordinate ring C[A⊗
∧2
B] has an isotypic decomposition:⊕

d C[A⊗
∧2B]d =

⊕
d

(⊕
λ`d,π`2d (SλA⊗SπB)⊗Cmλ,π

)
∪ ∪⊕

d Id(X) =
(⊕

λ`d,π`d
⊕

d Id(X)λ,π
)

I SλA⊗SπB: Schur modules indexed by partitions λ and π,
I Cmλ,π : multiplicity space.

Given λ, π and the multiplicity mλ,π, there is a combinatorial algorithm
for constructing polynomials!

( Modified version of Landsberg-Manivel’04 algorithm)
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Invariants via Young Symmetrizers

Use LiE: sym_tensor(6,[1,0]^[0,0,1,0,0],A2A5)
⇒ only one SL(3)× SL(6) invariant of degree 6 in C[A⊗

∧2
B].

Start with partitions (2, 2, 2) and (3, 3, 3, 3, 3, 3) associated (respectively) to
the trivial representations of GL(3) and GL(6) in degrees 6 and 18 respectively.

Find fillings:

a c
b e
d f ⊗

a b c
a b d
a d e
b d f
c e f
c e f

Use fillings as input to the Young Symmetrizer algorithm.
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Invariants via Young Symmetrizers
Construct a generic polynomial (in auxiliary variables):

1 To the filling

a c
b e
d f associate pV =

∣∣∣ a1 a2 a3b1 b2 b3
d1 d2 d3

∣∣∣ · ∣∣∣ c1 c2 c3e1 e2 e3
f1 f2 f3

∣∣∣

2 To the filling

a b c
a b d
a d e
b d f
c e f
c e f associate pW =∣∣∣∣∣∣

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
b31 b32 b33 b34 b35 b36
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36
e21 e22 e23 e24 e25 e26
e31 e32 e33 e34 e35 e36

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
c11 c12 c13 c14 c15 c16
d11 d12 d13 d14 d15 d16
e11 e12 e13 e14 e15 e16
f11 f12 f13 f14 f15 f16
f21 f22 f23 f24 f25 f26
f31 f32 f33 f34 f35 f36

∣∣∣∣∣∣∣ .
3 Extract the terms pV pW : replace ai · (a1j∧a2k∧a3l) with xi,j,k,l
4 Repeat previous step for b, c, . . . , f .

The resulting polynomial will be a polynomial in the image of the Young
Symmetrizer associated to our initial fillings.
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Solution to Problem 6.5 in [Abo-Wan 2012]

Theorem (Abo-Daleo-Hauenstein-O.)

The hypersurface σ5(P2 ×G(2, 5)) ⊂ P59 is defined by the image of the
Young symmetrizer produced by the recipe given by the filling

a c
b e
d f ⊗

a b c
a b d
a d e
b d f
c e f
c e f .

The resulting polynomial has precisely 10080 monomials, 5040 of which have
coefficient +1 and 5040 of which have coefficient −1.
Download from ancillary files associated to the arXiv version of our paper!

“Theorem” not “Theorem∗” because there is no lower degree invariant equation.
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An Ottaviani-type expression?

We suppose that this equation may have an expression as a root of a
determinant of a special matrix, similar to Ottaviani’s degree 15 equation in
[Ottaviani’09], however our initial attempts at finding such an expression were
unsuccessful.

A natural guess is to start from T ∈ A⊗ ∧3B and produce the 18× 36 matrix

AT : (B ⊗B)∗ → (A⊗B),

which as rank 3 when T has rank 1 and rank ≤ 3r when T has rank r.

However, this map actually factors through a map

∧2B∗ → (A⊗B)

but this matrix is 18× 15, and it’s maximum rank is 15. This means that this
construction cannot distinguish rank 5 tensors from rank 6 tensors.
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Numerical Algebraic Geometry: Bertini

Let H be an irreducible hypersurface and L be a line so that degH =
|H ∩ L|.

1 Generate a point x ∈ H ∩ L. Initialize W := {x}.
2 Perform a random monodromy loop starting at the points in W:

(a) Pick a random loop M(t) in the space of lines so that
M(0) =M(1) = L.

(b) Trace the curves H ∩M(t) starting at the points in W at t = 0 to
compute the endpoints E at t = 1. (Hence, E ⊂ H ∩ L).

(c) Update W :=W ∪ E .

3 Repeat (2) until the trace test verifies that W = H ∩ L.
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Proposition∗

The hypersurface σ5(Seg(P2 ×G(2, 5))) ⊂ P59 has degree 6.

In our execution of the procedure for the hypersurface
H = σ5(Seg(P2 ×G(2, 5))), it took 6 random monodromy loops to compute
the six points in H ∩ L. The total procedure lasted 50 seconds using a single
2.3 GHz core of an AMD Opteron 6376 processor.

Proposition∗

The hypersurface σ5(Seg(P2 ×G(1, 6))) ⊂ P62 has degree 21.

Proposition∗

The hypersurface σ8(Seg(P2 ×G(1, 10))) ⊂ P164 has degree 33.

In our execution, it took 13 and 12 random monodromy loops to yield the
degree many points for these cases, respectively. Using a total of sixteen 2.3
GHz cores, the total procedure lasted 2.5 and 32 minutes, respectively.
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