Secant Varieties and Equations of Abo-Wan Hypersurfaces

Luke Oeding Auburn University

Secant varieties

Suppose X is an algebraic variety in \mathbb{P}^N .

The *X*-rank of $[p] \in \mathbb{P}^N$ is the min. r such that $p = \sum_{i=1}^r x_i$ with $[x_i] \in X$.

The Zariski closure of the points of X-rank r is the r-secant variety to X, denoted $\sigma_r(X)$, and consists of the points in \mathbb{P}^N of X-border rank r.

Taking the Zariski closure often causes problems.

Secant varieties and tensors

Let $A = \{a_i\}, B = \{b_j\}, C = \{c_k\}$, be \mathbb{C} -vector spaces, then the tensor product $A \otimes B \otimes C$ has basis elements of the form $a_i \otimes b_j \otimes c_k$, with coordinates p_{ijk} .

• Segre variety (rank 1 tensors): (Independence model) Defined by

$$\begin{array}{rcl} \operatorname{Seg}: \mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C & \longrightarrow & \mathbb{P}(A \otimes B \otimes C) \\ ([u], [v], [w]) & \longmapsto & [u \otimes v \otimes w]. \end{array}$$

In coordinates: $p_{i,j,k} = u_i v_j w_k$.

• The r^{th} secant variety of a variety $X \subset \mathbb{P}^n$: (Mixture model)

$$\sigma_r(X) := \overline{\bigcup_{x_1, \dots, x_r \in X} \mathbb{P}(\operatorname{span}\{x_1, \dots, x_r\})} \subset \mathbb{P}^n$$

General points of $\sigma_r(\text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C))$ have the form $[\sum_{s=1}^r u^s \otimes v^s \otimes w^s]$, or in coordinates: $p_{i,j,k} = \sum_{s=1}^r u^s_i v^s_j w^s_k$.

(*Might also work over \mathbb{R} or Δ -probability simplex, but not today.)

Some Applications of Secant Varieties

• Classical Algebraic Geometry: When can a given projective variety $\overline{X \subset \mathbb{P}^n}$ be isomorphically projected into \mathbb{P}^{n-1} ?

Determined by the dimension of the secant variety $\sigma_2(X)$.

- Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant varieties. Berkeley-Simons program Fall'14
- Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).

For star trees / bifurcating trees this is the salmon conjecture.

• <u>Signal Processing</u>: Blind identification of under-determined mixtures, analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.

Decompose the signal uniquely to recover each user's signal.

• Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...

First questions for secant varieties

Given $X \subset \mathbb{P}^N$ we ask:

- [Dimensions] What is the dimension of $\sigma_r(X)$? – When does $\sigma_r(X)$ fill the ambient \mathbb{P}^N ? (defectivity)
- **2** [Equations] What are the polynomial defining equations of $\sigma_r(X)$?
- **③** [Generic Identifiability] For generic $x \in \mathbb{P}^N$, does x have a unique expression as a sum of points from X? (ignoring trivialities)
- [Decomposition] For my favorite $x \in \mathbb{P}^N$, can you find an expression of x as a sum of points from X?

Sometimes $2 \Rightarrow 1 \Rightarrow 3 \Rightarrow 4$

Tensors with different types of symmetry

Suppose A, B, C are vector spaces over \mathbb{C} . Hypermatrices, symmetric, partially symmetric, skew-symmetric, and partially skew-symmetric tensors:

Space	Hypermatrix	Symmetry
$A \otimes B \otimes C$	$(T_{i,j,k})$	
S^dA	(T_{i_1,\ldots,i_d})	$T_{i_1,\ldots,i_d} = T_{\sigma(i_1),\ldots,\sigma(i_d)}$ for all $\sigma \in \mathfrak{S}_d$
$A \otimes S^2 B$	$(T_{i,j,k})$	$T_{i,j,k} = T_{i,k,j}$ for all i, j, k
$\bigwedge^{k+1} A$	(T_{i_0,\ldots,i_k})	$T_{i_0,\ldots,i_k} = sgn(\sigma)T_{\sigma(i_0),\ldots,\sigma(i_k)}$ for all $\sigma \in \mathfrak{S}_{k+1}$
$A \otimes \bigwedge^{k+1} B$	(T_{i,j_0,\ldots,j_k})	$T_{i,j_0,\ldots,j_k} = sgn(\sigma)T_{i,\sigma(j_0),\ldots,\sigma(j_k)}$ for all $\sigma \in \mathfrak{S}_{k+1}$

Partially skew-symmetric tensors (in coordinates)

Choose bases u_1, \ldots, u_m of $A \cong \mathbb{C}^m$ and v_1, \ldots, v_n of $B \cong \mathbb{C}^n$. In coordinates $T \in A \otimes \bigwedge^2 B$ is

$$T = \sum_{i,j,k} T_{ijk} u_i \otimes v_j \otimes v_k$$

with symmetry: $T_{ijk} = -T_{ikj}$. Collect terms:

$$T = \sum_{i} u_i \otimes \sum_{j,k} T_{ijk} v_j \otimes v_k = \sum_{i} u_i \otimes T_i$$

with $T_i \in \bigwedge^2 B$, T is a collection of m skew-symmetric $n \times n$ matrices.

Tensors and examples of classical algebraic varieties Consider each symmetry type and the (classical) variety of "rank-1" tensors:

Name	Notation	Points	Ambient Space
Segre	$\operatorname{Seg}\left(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C\right)$	$[a{\mathord{ \otimes } } b{\mathord{ \otimes } } c]$	$\mathbb{P}(A \otimes B \otimes C)$
Veronese	$ u_d(\mathbb{P}A) $	$[a{\mathord{ \otimes } }\cdots{\mathord{ \otimes } } a]$	$\mathbb{P}(S^d A)$
Segre-Veronese	$\operatorname{Seg}\left(\mathbb{P}A \times \nu_2(\mathbb{P}V)\right)$	$[a{\mathord{ \otimes } } b{\mathord{ \otimes } } b]$	$\mathbb{P}(A \otimes S^2 B)$
Grassmannian	$\mathbb{G}(k,A)$	$[a_0 \wedge \cdots \wedge a_k]$	$\mathbb{P}\left(igwedge^{k+1}A ight)$
Segre-Grassmann	$\operatorname{Seg}(\mathbb{P}A \times \mathbb{G}(k, B))$	$[a \otimes (b_0 \wedge \cdots \wedge b_k)]$	$\mathbb{P}(A {\otimes} {\bigwedge}^{k+1} B)$

In each case a rank 1 tensor can be put in the form (in an appropriate basis):

How to email the Segre-Grassmann $Seg(\mathbb{P}A \times \mathbb{G}(k, B))$

```
KK = QQ;
makeRank1 = (m,k,n)->(
    E = random(KK^(m+1),KK^(n+1));
    e = gens minors(k+1,E);
    v = random(KK^(m+1),KK^1);
    matrix {flatten entries(v*e)}
)
makeRank1(2,2,5) -- a point on Seg(P^2 x G(2,5))
sum(5,i->makeRank1(2,2,5)) -- a point on sig_5(Seg(P^2 x G(2,5)))
```

(In practice I'm more careful to name the coordinates and avoid collisions.) Let $v = (v_0, \ldots, v_m)$, and let $E = (e_{i,j})$ be a $(k+1) \times (n+1)$ matrix. Get a $(m+1) \times \binom{n+1}{k+1}$ vector for a point on $\operatorname{Seg}(\mathbb{P}^m \times \mathbb{G}(k, n))$ as

$$(v_i \cdot \Delta_I(E))_{i,I},$$

where Δ_I – maximal minor of E with columns $I = (i_1, \ldots, i_{k+1})$. Pseudo-random points on $\sigma_r(\operatorname{Seg}(\mathbb{P}^m \times \mathbb{G}(k, n)))$: let v and E have random entries, and summing r pseudorandom points of $\operatorname{Seg}(\mathbb{P}^m \times \mathbb{G}(k, n))$.

What is a flattening?

Express a tensor $T = \sum_{i,j,k} p_{ijk} a_i \otimes b_j \otimes c_k \in A \otimes B \otimes C$ as a matrix (in 3 ways):

$$\begin{array}{lcl} T & = & \sum_{i} a_{i} \otimes \left(\sum_{j,k} p_{ijk} b_{j} \otimes c_{k} \right) & \in A \otimes (B \otimes C), \\ T & = & \sum_{j} b_{j} \otimes \left(\sum_{i,k} p_{ijk} a_{i} \otimes c_{k} \right) & \in B \otimes (A \otimes C), \\ T & = & \sum_{k} \left(\sum_{i,j} p_{ijk} a_{i} \otimes b_{j} \right) \otimes c_{k} & \in (A \otimes B) \otimes C. \end{array}$$

Example: $T = [p_{ijk}] \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ to $\mathbb{C}^3 \otimes (\mathbb{C}^3 \otimes \mathbb{C}^3) \cong \mathbb{C}^3 \otimes \mathbb{C}^9$ flattens to: $\psi_{0,T} = \begin{pmatrix} p_{111} & p_{121} & p_{131} & p_{112} & p_{122} & p_{132} & p_{113} & p_{123} & p_{133} \\ p_{211} & p_{221} & p_{231} & p_{212} & p_{222} & p_{232} & p_{213} & p_{223} & p_{233} \\ p_{311} & p_{321} & p_{331} & p_{312} & p_{322} & p_{332} & p_{313} & p_{323} & p_{333} \end{pmatrix}$

When they exist, $(r+1) \times (r+1)$ minors of $\psi_{0,T}$ are (some) equations of $\sigma_r(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C)$.

Equations from flattenings

Realize $T \in A \otimes B \otimes C = A \otimes (B \otimes C)$ as a linear map (a matrix)

$$\psi_{0,T} \colon A^* \xrightarrow{(T_1 \ T_2 \ \dots \ T_l)^t} B \otimes C$$

Rank 1 case: Let $T_1 = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}, \ T_i = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}, \ i = 2 \dots m$
$$\psi_{0,T} = \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 & \cdots & 0 \end{pmatrix}^t$$

If $\operatorname{Rank}(T) = 1$, then $\operatorname{Rank}(\psi_{0,T}) = 1$. Construction is linear in T:

$$\psi_{0,T} + \psi_{0,T'} = \psi_{0,T+T'}$$

$$\begin{pmatrix} T_1 \\ T_2 \\ \vdots \\ T_l \end{pmatrix} + \begin{pmatrix} T_1' \\ T_2' \\ \vdots \\ T_l' \end{pmatrix} = \begin{pmatrix} T_1 + T_1' \\ T_2 + T_2' \\ \vdots \\ T_l + T_l' \end{pmatrix}$$

 $\operatorname{Rank}(\psi_{0,T}) + \operatorname{Rank}(\psi_{0,T'}) \leq \operatorname{Rank}(\psi_{0,T} + \psi_{0,T'}) = \psi_{0,T+T'}$

By subadditivity of rank, if $\operatorname{Rank}(T) = r$, then $\operatorname{Rank}(\psi_{0,T}) \leq r$.

The $(r+1) \times (r+1)$ minors of $\psi_{0,T}$ are necessary conditions for Brank $(T) \leq r$.

However flattenings are trivial when $\operatorname{Rank}(T) > \min \{\dim A \dim R \dim C\}$ Oeding (Auburn, NIMS) Secants, Equations and Applications August 9, 2014 11 / 34

Symmetric Flattenings

Consider $\phi \in Sym^d V$ as a symmetric multilinear form: ϕ eats d vectors (symmetrically) and spits out a number.

If we only feed s vectors to ϕ , it still wants to eat d - s more. So we can construct a linear map

$$\begin{split} \phi_{s,d-s} &: Sym^s(V^*) \to Sym^{d-s}V \\ & [v_1,\ldots,v_s] \mapsto \phi(v_1,\ldots,v_s,_,\ldots,_) \end{split}$$

Macaulay (1916) showed that $\operatorname{Brank} \phi \geq \operatorname{Rank} \phi_{s,d-s}$ for all $1 \leq s \leq d$.

The minors of $\phi_{s,d-s}$ are called minors of *Catalecticants*. (Also called *symmetric flattenings* or *special Hankel matrices*).

Give some equations for the secant varieties to Veronese varieties.

12 / 34

Flattenings and the Segre variety

Classical: the ideal of any Segre is generated by all 2×2 minors of flattenings.

Theorem (Raicu (2012), (Garcia, Stillman and Sturmfels Conj.)) The prime ideal of $\sigma_2(\text{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_n))$ is generated by the 3×3 minors of flattenings.

Built on work of Landsberg-Manivel, Landsberg-Weyman, Geramita et al., Allman-Rhodes.

Raicu also proved the stronger analogous result for the secant variety of any Segre-Veronese.

[Michalek-O.-Zwiernik (2014)] gave a toric proof of the scheme-theoretic version that works in any characteristic using "secant cumulants."

Flattenings run out quickly: $\sigma_3(\text{Seg}(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2))$ has no equations from flattenings since there are no 4×4 minors of 3×9 , ([Strassen'83, Y. Qi'14].)

Exterior flattenings

Suppose $T \in A \otimes B \otimes C$. Have a natural inclusion $A \subset \bigwedge^2 A \otimes A^*$. Construct a new linear map via the inclusion

$$A \otimes B \otimes C \quad \subset \quad \bigwedge^2 A \otimes A^* \otimes B \otimes C \quad = \quad (A^* \otimes B) \otimes \left(\bigwedge^2 A \otimes C\right).$$

Fix dim(A) = 3. With $T = \sum_{i} u_i \otimes T_i$, we choose a good basis and write

$$\psi_{1,T}\colon A\otimes B^* \xrightarrow{\begin{pmatrix} 0 & T_3 & -T_2 \\ -T_3 & 0 & T_1 \\ T_2 & -T_1 & 0 \end{pmatrix}} \bigwedge^2 A\otimes C.$$

Basic idea:

 $\psi_{1,T+T'} = \psi_T + \psi_{T'} \qquad \text{construction is linear in } T$ $\operatorname{Rank}(T) = 1 \Rightarrow \operatorname{Rank}(\psi_T) = 2 \qquad \text{base case}$ $\therefore \operatorname{Rank}(T) = r \Rightarrow \operatorname{Rank}(\psi_T) \leq 2r \qquad \text{subadditivity of matrix rank}$

The $(2r+1) \times (2r+1)$ minors of $\psi_{1,T}$ are necessary conditions for Brank $(T) \leq r$.

Exterior Flattenings: $\operatorname{Rank}(T) = 1 \Rightarrow \operatorname{Rank}\psi_{1,T} = 2$

Let
$$T_1 = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}$$
, $T_i = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix}$, $i = 2..m$.
 $\psi_{1,T} = \begin{pmatrix} 0 & T_3 & -T_2 \\ -T_3 & 0 & T_1 \\ T_2 & -T_1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \cdots & 0 \\ 0 & \ddots & 0 \end{pmatrix} \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 0 \\ 0 & \ddots & 0 \end{pmatrix} \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \ddots & 0 \\ 0 & \ddots & 0 \end{pmatrix}$

Result is invariant under natural changes of coordinates.

Exterior flattenings (partially symmetric case)

Have natural inclusions $A \subset \bigwedge^2 A \otimes A^*$, $S^2 B \subset B \otimes B$. Construct a new linear map via the inclusion $A \otimes S^2 B \subset (B \otimes A^*) \otimes (B \otimes \bigwedge^2 A)$. Fix m = 3. With $T = \sum_i u_i \otimes T_i$, we choose a good basis and write

$$\psi_{1,T} \colon B^* \otimes A \xrightarrow{\begin{pmatrix} 0 & T_3 & -T_2 \\ -T_3 & 0 & T_1 \\ T_2 & -T_1 & 0 \end{pmatrix}} B \otimes \bigwedge^2 A.$$

Note $T_i \in S^2B \Rightarrow \psi_{1,T}$ is skew-symmetric \Rightarrow rank is even. Construction is linear in T:

$$\psi_{1,T} + \psi_{1,T'} = \psi_{1,T+T'}$$

$$\begin{pmatrix} 0 & T_3 & -T_2 \\ -T_3 & 0 & T_1 \\ T_2 & -T_1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & T_3' & -T_2' \\ -T_3' & 0 & T_1' \\ T_2' & -T_1' & 0 \end{pmatrix} = \begin{pmatrix} 0 & T_3 + T_3' & -T_2 - T_2' \\ -T_3 - T_3' & 0 & T_1 + T_1' \\ T_2 + T_2' & -T_1 - T_1' & 0 \end{pmatrix}$$

 $2(r+1) \times 2(r+1)$ Pfaffians of $\psi_{1,T}$ are necessary conditions for $\operatorname{Brank}(T) \leq r$.

Exterior flattenings more generally

Include $A \otimes B \otimes C \subset (B \otimes \bigwedge^{j} A^{*}) \otimes (C \otimes \bigwedge^{j+1} A)$. Example dim(A) = l = 4: Let $T = \sum_{i=1}^{4} u_i \otimes T_i$. In suitable coordinates:

$$\begin{split} \psi_{0,T} \colon B^* \otimes \bigwedge^0 A^* & \xrightarrow{(T_1 \ T_2 \ T_3 \ T_4)^t} C \otimes \bigwedge^1 A, \\ \psi_{1,T} \colon B^* \otimes \bigwedge^1 A^* & \xrightarrow{\begin{pmatrix} 0 & T_3 & -T_2 & 0 \\ -T_3 & 0 & T_1 & 0 \\ T_2 & -T_1 & 0 & 0 \\ 0 & T_4 & 0 & 0 & -T_1 \\ 0 & T_4 & 0 & 0 & -T_2 \\ 0 & 0 & T_4 & -T_3 \end{pmatrix}}_{C \otimes \bigwedge^2 A, \\ \psi_{2,T} \colon B^* \otimes \bigwedge^2 A^* & \xrightarrow{\begin{pmatrix} -T_4 & 0 & 0 & 0 & T_3 & -T_2 \\ 0 & 0 & -T_4 & 0 & -T_3 & 0 & T_1 \\ 0 & 0 & -T_4 & T_2 & -T_1 & 0 \\ T_1 \ T_2 \ T_3 & 0 & 0 & 0 \end{pmatrix}}_{T_3 \ C \otimes \bigwedge^3 A \\ \psi_{3,T} \colon B^* \otimes \bigwedge^3 A^* \xrightarrow{(T_1 \ T_2 \ T_3 \ T_4 \ T_3 \ T_4 \ T_4 \ T_5 \ T_5$$

In general one finds $\operatorname{Rank}(T) \leq r \Rightarrow \operatorname{Rank}(\psi_{j,T}) \leq r {l-1 \choose j}$. We want to know when the necessary conditions are also sufficient.

Subspace varieties

Definition

The subspace variety $\operatorname{Sub}_{p,q,r}(A \otimes B \otimes C)$ is the variety of tensors $[T] \in \mathbb{P}(A \otimes B \otimes C)$ such that there exist subspaces $\mathbb{C}^p \subseteq A, \mathbb{C}^q \subseteq B, \mathbb{C}^r \subseteq C$, and $[T] \in \mathbb{P}(\mathbb{C}^p \otimes \mathbb{C}^q \otimes \mathbb{C}^r)$.

Theorem (Thm. 3.1, Landsberg–Weyman '07)

 $\operatorname{Sub}_{p,q,r}(A \otimes B \otimes C)$ is normal with rational singularities. Its ideal is generated by the minors of flattenings;

$$\left(\bigwedge^{p+1} A^* \otimes \bigwedge^{p+1} (B^* \otimes C^*)\right) \oplus \left(\bigwedge^{q+1} B^* \otimes \bigwedge^{q+1} (A^* \otimes C^*)\right) \\ \oplus \left(\bigwedge^{r+1} (A^* \otimes B^*) \otimes \bigwedge^{r+1} C^*\right)$$

Key Point: $\operatorname{Sub}_{r,r,r} \supseteq \sigma_r(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C)$ and therefore get some (determinantal) equations of the secant varieties.

Note: C. Raicu has recently proved that for any Segre-Veronese variety X, and $r \leq 2$, the ideal $I(\sigma_2(X))$ is generated by 3×3 minors of flattenings.

Partially symmetric subspace and secant varieties

Definition

The subspace variety $\operatorname{Sub}_{p,q}(A \otimes S^2 B)$ is the variety of tensors $[T] \in \mathbb{P}(A \otimes S^2 B)$ such that there exist subspaces $\mathbb{C}^p \subseteq A, \mathbb{C}^q \subseteq B$, and $[T] \in \mathbb{P}(\mathbb{C}^p \otimes S^2 \mathbb{C}^q)$.

 $T \in \operatorname{Sub}_{p,q}(A \otimes S^2 B)$ implies that after changing coordinates,

$$\psi_{0,T} = \left(T_1' T_2' \cdots T_{m'}' 0 \cdots 0 \right)^t,$$

with $T'_i = \begin{pmatrix} B_i & 0 \\ 0 & 0 \end{pmatrix}$ and B_i a symmetric $q \times q$ matrix.

Proposition (Cartwright-Erman-O. (2012))

The defining ideal of $\operatorname{Sub}_{p,q}(A \otimes S^2 B)$ is generated by the $(p+1) \times (p+1)$ minors of the flattening $B^* \to A \otimes B$ and the $(q+1) \times (q+1)$ minors of the flattening $A^* \to S^2 B$.

Theorem (Cartwright-Erman-O. (2012))

For $r \leq 5$, the ideal of $\sigma_r(\operatorname{Seg}(\mathbb{P}^2 \times \nu_2(\mathbb{P}B)))$ is generated by $(r+1) \times (r+1)$ minors of flattenings, and $(2r+2) \times (2r+2)$ Pfaffians of exterior flattenings.

Skew-symmetric subspace varieties

Definition

The subspace variety $\operatorname{Sub}_p(\bigwedge^{k+1} A)$ is the variety of tensors $[T] \in \mathbb{P}\left(\bigwedge^{k+1} A\right)$ such that there exist a subspace $\mathbb{C}^p \subseteq A$, and $[T] \in \mathbb{P}\left(\bigwedge^{k+1} \mathbb{C}^p\right)$.

The equations of this variety are mysterious when $k \ge 2$:

Proposition (Boralevi-O. $(2012)^1$)

The ideal of the subspace variety $\operatorname{Sub}_5(\bigwedge^3 \mathbb{C}^7) \subset \mathbb{P}^{34}$ is generated in degree 3 by the GL_7 -modules $S_{(3,1,1,1,1,1,1)} \mathbb{C}^7$ (28 cubics) and $S_{(2,2,2,1,1,1)} \mathbb{C}^7$ (224 cubics).

The space of 28 cubics is vector space isomorphic to quadrics on 7 variables. The space of 224 cubics is inherited from a space of 20 cubics on 6 variables, which is vector space isomorphic the span of the 3×3 minors of a 3×6 matrix.

Used Weyman's "Geometric Technique," Representation Theory, Bott's algorithm, and careful combinatorial book-keeping.

¹ Appeared in [J.M. Landsberg, Tensors: Geometry and Applications, (p405-407), AMS GSM, vol. 128, (2012)].

Equations of secant varieties via more general flattenings

- Symmetric: Aronhold's invariant (1849): $\sigma_3(v_3(\mathbb{P}^2)) \subsetneqq \mathbb{P}^9$.
- Partially symmetric: Toeplitz (1877): $\sigma_5\left(\mathbb{P}^2 \times \nu_2(\mathbb{P}^3)\right) \subsetneqq \mathbb{P}^{29}$. Cartwright-Erman-O. (2012): $\sigma_r\left(\mathbb{P}^2 \times \nu_2(\mathbb{P}^n)\right) \subsetneqq \mathbb{P}^{3\binom{n+2}{2}-1}, r \leq 5$.
- Partially skew-symmetric: Abo-Wan (2013): $\sigma_{3\ell}(\operatorname{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 4\ell + 2))) \subsetneqq \mathbb{P}^{3\binom{4\ell+3}{2}-1}.$
- Unrestricted: Strassen (1983): $\sigma_4 \left(\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2 \right) \subsetneqq \mathbb{P}^{26}$
- Ubiquitous: Ottaviani (2007) united and generalized all of these equations with a uniform construction we call exterior flattenings.
- Landsberg-Ottaviani (2012): Many more cases, much more general.

Abo-Wan Hypersurfaces: $\sigma_{3\ell+2}(\operatorname{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 4\ell+2)))$ Consider $\sigma_5(\mathbb{P}^2 \times \mathbb{G}(1, 6)) \subset (\mathbb{P}\mathbb{C}^3 \otimes \bigwedge^2 \mathbb{C}^7) = \mathbb{P}(V \otimes \bigwedge^2 W).$ View $T \in V \otimes \bigwedge^2 W$) as an element in $\bigwedge^2 V^* \otimes \bigwedge^2 W$, which induces

 $\varphi_T \colon V \otimes W^* \to V^* \otimes W,$

Explicitly φ_T is the (21×21) Kronecker product of two matrices:

$$\varphi_T = \begin{pmatrix} 0 & v_1 & -v_2 \\ -v_1 & 0 & v_3 \\ v_2 & -v_3 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & e_{12} & e_{13} & e_{14} & e_{15} & e_{16} & e_{17} \\ -e_{12} & 0 & e_{23} & e_{24} & e_{25} & e_{26} & e_{27} \\ -e_{13} & -e_{23} & 0 & e_{34} & e_{35} & e_{36} & e_{37} \\ -e_{14} & -e_{24} & -e_{34} & 0 & e_{45} & e_{46} & e_{47} \\ -e_{15} & -e_{25} & -e_{35} & -e_{45} & 0 & e_{56} & e_{57} \\ -e_{16} & -e_{26} & -e_{36} & -e_{46} & -e_{56} & 0 & e_{67} \\ -e_{17} & -e_{27} & -e_{37} & -e_{47} & -e_{57} & -e_{67} & 0 \end{pmatrix}$$

Replace $v_i \otimes e_{jk}$ with x_{ijk} we obtain the matrix $\varphi_T = (\text{too big for screen})$. Check: Rank $(T) = 1 \Rightarrow$ Rank $\varphi_T = 4$ so Rank $(T) = r \Rightarrow$ Rank $\varphi_T \leq 4r$. In particular if Rank T = 5 then Rank $\varphi_T \leq 20$, so det φ_T vanishes. Check: Rank $(\varphi_T) = 21$ for random T, so det φ_T is non-trivial.

How to email an exterior flattening

KK = ZZ/101
T = KK[v1, v2, v3]**KK[w12, w13, w14, w15, w16, w17, w23, w24, w25]
Mv = matrix {{0, v1, -v2}, {-v1, 0, v3}, {v2, -v3,0}}
Mw = matrix {{ 0, w12, w13, w14, w15, w16, w17},
{-w12, 0, w23, w24, w25, w26, w27},
{-w13, -w23, 0, w34, w35, w36, w37},
{-w14, -w24, -w34, 0, w45, w46, w47},
{-w15, -w25, -w35, -w45, 0, w56, w57},
{-w16, -w26, -w36, -w46, -w56, 0, w67},
{-w17, -w27, -w37, -w47, -w57, -w67, 0 }
$K = M_W * * M_V$
<pre>for i from 1 to 6 do print(i, rank diff(K, sum(i, j-> makeRank1()))</pre>
R = KK[x112, x212, x312, x113, x213, x313, x114, x214, x314, x115,
P = T * R
<pre>vwTOx = v1*w12*x112 + v1*w13*x113 + v1*w14*x114 + v1*w15*x115 + v1* myMat = diff(sub(K,P),vwTox)</pre>
<pre>mypoly = det(myMat, Strategy => Cofactor);</pre>

Kronecker product

0 0 $-x_{212}$ 0 $x_{113} - x_{213} = 0$ $-x_{214}$ 0 x_{112} x_{114} $x_{115} - x_{215}$ 0 0 0 $-x_{112}$ 0 x_{312} $-x_{113}$ 0 $x_{313} - x_{114} = 0$ $x_{314} - x_{115}$ 0 x_{315} 0 0 0 $x_{212} - x_{312}$ 0 $x_{213} - x_{313}$ 0 $x_{214} - x_{314}$ 0 $x_{215} - x_{315}$ 0 0 0 $-x_{112}$ 0 0 0 $x_{123} - x_{223}$ 0 $-x_{224}$ 0 $x_{125} - x_{225}$ x_{212} x_{124} x_{112} 0 $-x_{312}$ 0 0 0 $-x_{123}$ 0 x_{323} $-x_{124}$ 0 x_{324} $-x_{125}$ 0 x_{325} $-x_{212}$ 0 0 0 x_{223} $-x_{323}$ $-x_{324}$ $-x_{325}$ x_{312} 0 x_{224} 0 x_{225} 0 $-x_{123}$ 0 $-x_{113}$ x_{213} 0 x_{223} 0 0 0 0 x_{134} $-x_{234}$ 0 x_{135} $-x_{235}$ $-x_{313}$ x_{123} $-x_{323}$ 0 0 0 $-x_{134}$ $-x_{135}$ 0 0 0 x_{334} 0 x_{335} x_{113} 0 0 $-x_{213}$ x_{313} 0 $-x_{223}$ x_{323} 0 0 $x_{234} - x_{334}$ 0 0 $x_{235} - x_{335}$ $-x_{134}$ 0 $-x_{114}$ x_{214} 0 $-x_{124}$ x_{224} 0 x_{234} 0 0 0 0 x_{145} $-x_{245}$ 0 0 0 $-x_{314}$ x_{124} 0 $-x_{324}$ x_{134} 0 $-x_{334}$ $-x_{145}$ 0 x_{114} 0 x_{345} 0 0 0 0 $-x_{224}$ x_{324} 0 $-x_{234}$ x_{334} $-x_{214}$ x_{314} 0 $x_{245} - x_{345}$ 0 0 $-x_{115}$ x_{215} $0 - x_{125} x_{225}$ 0 $-x_{135}$ x_{235} 0 $-x_{145}$ 0 0 0 x_{245} 0 0 0 $-x_{325}$ x_{135} 0 0 0 x_{115} 0 $-x_{315}$ x_{125} $-x_{335}$ x_{145} $-x_{345}$ $-x_{225}$ x_{325} $-x_{235}$ x_{335} $-x_{245}$ x_{345} 0 0 0 0 $-x_{215}$ x_{315} 0 0 0 $0 -x_{126} -x_{226}$ $-x_{136}$ x_{236} $-x_{146}$ x_{246} 0 0 $-x_{116}$ x_{216} 0 0 $-x_{156}$ x_{256} x_{116} 0 $-x_{316}$ x_{126} 0 $-x_{326}$ x_{136} 0 $-x_{336}$ x_{146} 0 $-x_{346}$ x_{156} 0 $-x_{356}$ $-x_{216}$ x_{316} 0 $-x_{226}$ x_{326} 0 $-x_{236}$ x_{336} 0 $-x_{246}$ x_{346} 0 $-x_{256}$ x_{356} 0 $-x_{127}$ x_{227} 0 $-x_{137}$ x_{237} 0 0 0 $-x_{117}$ x_{217} 0 $-x_{147}$ x_{247} $-x_{157}$ x_{257} $x_{117} = 0$ $-x_{317}$ x_{127} $0 - x_{327} x_{137} 0 - x_{337} x_{147} 0 - x_{347} x_{157}$ 0 $-x_{357}$ $-x_{217}$ x_{317} 0 $-x_{227}$ x_{327} 0 $-x_{237}$ x_{337} 0 $-x_{247}$ x_{347} 0 $-x_{257}$ x_{357} 0

Bertini team [N. Daleo & J. Hauenstein] to the rescue! How do we know that the 21 × 21 determinant det φ_T is irreducible (and hence minimally defines the ideal of $\sigma_5(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 6))))$?

A computation in Bertini provides missing ingredient:

Proposition*

The hypersurface $\sigma_5(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 6))) \subset \mathbb{P}^{62}$ has degree 21.

We have an irreducible hypersurface of degree 21 inside of the zero-locus of a degree 21 equation!

Proposition*

The hypersurface $\sigma_8(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 10))) \subset \mathbb{P}^{164}$ has degree 33.

A similar 33×33 exterior flattening provides the equation.

Proposition*

The hypersurface $\sigma_5(\operatorname{Seg}(\mathbb{P}^2 \times \mathbb{G}(2,5))) \subset \mathbb{P}^{59}$ has degree 6.

No 6×6 flattening... So now what?

Find equations in the ideal

Consider $\sigma_5(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(2,5))) \subset \mathbb{P}^{59}$. Look for equations in $R = \mathbb{C}[x_0, \ldots, x_{59}]$. The Hilbert function of R starts like this:

d	=	1	2	3	4	5	6	
$HF_R(d)$	=	60	1830	37820	595665	7624512	82598880	
$HF_{R/I}(d)$	=	0	0	0	0	0	82598879	
$\dim(I_d)$	=	0	0	0	0	0	1	

To find the space of linear forms in the ideal, compute:

```
M = matrix apply(60,i-> {makeRank5(2,2,5)} );
rank M
```

Naively, to find the space of sextics in the ideal: compute 82598880 points on the variety, evaluate them on the 82598880 monomials of degree 6 and compute the kernel of the resulting 82598880×82598880 matrix.

Symmetry

• The symmetry group of

$$\sigma_5(\operatorname{Seg}(\mathbb{P}^2 \times \mathbb{G}(2,5))) \subset \mathbb{P}^{59} = \mathbb{P}\left(A \otimes \bigwedge^2 B\right)$$

is change of coordinates in each factor,

 $GL(A) \times GL(B)$

- A large group acts so we can use tools from Representation Theory!
- This symmetry is a powerful tool and we *should* exploit it!

Find equations in the ideal using representation theory

• Module notation:
$$S^d(A \otimes \bigwedge^2 B) = \mathbb{C}[p_{ijk} \mid p_{ijk} = -p_{ikj}]_d.$$

• Fact:
$$S^d \left(A \otimes \bigwedge^2 B\right)$$
 is a $GL(A) \times GL(B)$ -module.
The coordinate ring $\mathbb{C}[A \otimes \bigwedge^2 B]$ has an isotypic decomposition:

- S_λA⊗S_πB: Schur modules indexed by partitions λ and π,
 C^{m_{λ,π}}: multiplicity space.
- Given λ, π and the multiplicity $m_{\lambda,\pi}$, there is a combinatorial algorithm for constructing polynomials!

(Modified version of Landsberg-Manivel'04 algorithm)

Invariants via Young Symmetrizers

Use LiE: sym_tensor(6, [1,0]^[0,0,1,0,0],A2A5) \Rightarrow only one SL(3) × SL(6) invariant of degree 6 in $\mathbb{C}[A \otimes \bigwedge^2 B]$.

Start with partitions (2, 2, 2) and (3, 3, 3, 3, 3, 3) associated (respectively) to the trivial representations of GL(3) and GL(6) in degrees 6 and 18 respectively.

Find fillings:

Use fillings as input to the Young Symmetrizer algorithm.

Invariants via Young Symmetrizers

Construct a generic polynomial (in auxiliary variables):

a	b	c
a	b	d
a	d	e
b	d	f
c	e	f
		C

2 To the filling c e f associate $p_W =$

a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	1	b ₁₁	b_{12}	b_{13}	b_{14}	b_{15}	b_{16}		c_{11}	c_{12}	c_{13}	c_{14}	c_{15}	c16
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}		b21	b_{22}	b_{23}	b_{24}	b_{25}	b_{26}		d_{11}	d_{12}	d_{13}	d_{14}	d_{15}	d_{16}
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}		d_{21}	d_{22}	d_{23}	d_{24}	d_{25}	d_{26}		e_{11}	e_{12}	e_{13}	e_{14}	e_{15}	e16
b_{31}	b_{32}	b_{33}	b_{34}	b_{35}	b_{36}	·	d31	d32	d 33	d31	d35	d36	· ·	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f16
c_{21}	c_{22}	c_{23}	c_{24}	c_{25}	c_{26}		e21	e_{22}	e_{23}	e_{24}	e_{25}	e_{26}		f_{21}	f_{22}	f_{23}	f_{24}	f_{25}	f26
c_{31}	c_{32}	c_{33}	c_{34}	c_{35}	c_{36}	1	e31	e_{32}	$e_{33}^{$	e_{34}	e_{35}	e_{36}		f_{31}	f_{32}	f_{33}	f_{34}	f_{35}	f36

3 Extract the terms $p_V p_W$: replace $a_i \cdot (a_{1j} \wedge a_{2k} \wedge a_{3l})$ with $x_{i,j,k,l}$

• Repeat previous step for b, c, \ldots, f .

The resulting polynomial will be a polynomial in the image of the Young Symmetrizer associated to our initial fillings.

Oeding (Auburn, NIMS)

Solution to Problem 6.5 in [Abo-Wan 2012]

Theorem (Abo-Daleo-Hauenstein-O.)

The hypersurface $\sigma_5(\mathbb{P}^2 \times \mathbb{G}(2,5)) \subset \mathbb{P}^{59}$ is defined by the image of the Young symmetrizer produced by the recipe given by the filling

The resulting polynomial has precisely 10080 monomials, 5040 of which have coefficient +1 and 5040 of which have coefficient -1. Download from ancillary files associated to the arXiv version of our paper!

"Theorem" not "Theorem" because there is no lower degree invariant equation.

An Ottaviani-type expression?

We suppose that this equation may have an expression as a root of a determinant of a special matrix, similar to Ottaviani's degree 15 equation in [Ottaviani'09], however our initial attempts at finding such an expression were unsuccessful.

A natural guess is to start from $T \in A \otimes \wedge^3 B$ and produce the 18×36 matrix

$$A_T\colon (B\otimes B)^*\to (A\otimes B),$$

which as rank 3 when T has rank 1 and rank $\leq 3r$ when T has rank r.

However, this map actually factors through a map

$$\wedge^2 B^* \to (A \otimes B)$$

but this matrix is 18×15 , and it's maximum rank is 15. This means that this construction cannot distinguish rank 5 tensors from rank 6 tensors.

Numerical Algebraic Geometry: Bertini

Let \mathcal{H} be an irreducible hypersurface and \mathcal{L} be a line so that deg $\mathcal{H} = |\mathcal{H} \cap \mathcal{L}|$.

- Generate a point $x \in \mathcal{H} \cap \mathcal{L}$. Initialize $\mathcal{W} := \{x\}$.
- **2** Perform a random monodromy loop starting at the points in \mathcal{W} :
 - (a) Pick a random loop $\mathcal{M}(t)$ in the space of lines so that $\mathcal{M}(0) = \mathcal{M}(1) = \mathcal{L}.$
 - (b) Trace the curves $\mathcal{H} \cap \mathcal{M}(t)$ starting at the points in \mathcal{W} at t = 0 to compute the endpoints \mathcal{E} at t = 1. (Hence, $E \subset \mathcal{H} \cap \mathcal{L}$).
 - (c) Update $\mathcal{W} := \mathcal{W} \cup \mathcal{E}$.
- **3** Repeat (2) until the trace test verifies that $\mathcal{W} = \mathcal{H} \cap \mathcal{L}$.

Proposition*

The hypersurface $\sigma_5(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(2,5))) \subset \mathbb{P}^{59}$ has degree 6.

In our execution of the procedure for the hypersurface $\mathcal{H} = \sigma_5(\operatorname{Seg}(\mathbb{P}^2 \times \mathbb{G}(2,5)))$, it took 6 random monodromy loops to compute the six points in $\mathcal{H} \cap \mathcal{L}$. The total procedure lasted 50 seconds using a single 2.3 GHz core of an AMD Opteron 6376 processor.

Proposition*

The hypersurface $\sigma_5(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 6))) \subset \mathbb{P}^{62}$ has degree 21.

Proposition*

The hypersurface $\sigma_8(\text{Seg}(\mathbb{P}^2 \times \mathbb{G}(1, 10))) \subset \mathbb{P}^{164}$ has degree 33.

In our execution, it took 13 and 12 random monodromy loops to yield the degree many points for these cases, respectively. Using a total of sixteen 2.3 GHz cores, the total procedure lasted 2.5 and 32 minutes, respectively.