Secant Varieties

and
Equations of Abo-Wan Hypersurfaces

Luke Oeding Auburn University

Secant varieties

Suppose X is an algebraic variety in \mathbb{P}^{N}.
The X-rank of $[p] \in \mathbb{P}^{N}$ is the min. r such that $p=\sum_{i=1}^{r} x_{i}$ with $\left[x_{i}\right] \in X$.
The Zariski closure of the points of X-rank r is the r-secant variety to X, denoted $\sigma_{r}(X)$, and consists of the points in \mathbb{P}^{N} of X-border rank r.

Taking the Zariski closure often causes problems.

Secant varieties and tensors

Let $A=\left\{a_{i}\right\}, B=\left\{b_{j}\right\}, C=\left\{c_{k}\right\}$, be \mathbb{C}-vector spaces, then the tensor product $A \otimes B \otimes C$ has basis elements of the form $a_{i} \otimes b_{j} \otimes c_{k}$, with coordinates $p_{i j k}$.

- Segre variety (rank 1 tensors): (Independence model) Defined by

$$
\left.\left.\begin{array}{rl}
\text { Seg : } \mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C & \longrightarrow \mathbb{P}(A \otimes B \otimes C) \\
([u],[v],[w]) & \longmapsto
\end{array}\right] \Delta v \otimes w\right] .
$$

In coordinates: $p_{i, j, k}=u_{i} v_{j} w_{k}$.

- The $r^{\text {th }}$ secant variety of a variety $X \subset \mathbb{P}^{n}:$ (Mixture model)

$$
\sigma_{r}(X):=\bigcup_{x_{1}, \ldots, x_{r} \in X} \mathbb{P}\left(\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}\right) \subset \mathbb{P}^{n}
$$

General points of $\sigma_{r}(\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))$ have the form $\left[\sum_{s=1}^{r} u^{s} \otimes v^{s} \otimes w^{s}\right]$, or in coordinates: $p_{i, j, k}=\sum_{s=1}^{r} u_{i}^{s} v_{j}^{s} w_{k}^{s}$.
(*Might also work over \mathbb{R} or Δ-probability simplex, but not today.)

Some Applications of Secant Varieties

- Classical Algebraic Geometry: When can a given projective variety $X \subset \mathbb{P}^{n}$ be isomorphically projected into \mathbb{P}^{n-1} ?
Determined by the dimension of the secant variety $\sigma_{2}(X)$.
- Algebraic Complexity Theory: Bound the border rank of algorithms via equations of secant varieties. Berkeley-Simons program Fall'14
- Algebraic Statistics and Phylogenetics: Given contingency tables for DNA of several species, determine the correct statistical model for their evolution.

Find invariants (equations) of mixture models (secant varieties).
For star trees / bifurcating trees this is the salmon conjecture.

- Signal Processing: Blind identification of under-determined mixtures, analogous to CDMA technology for cell phones.

A given signal is the sum of many signals, one for each user.
Decompose the signal uniquely to recover each user's signal.

- Computer Vision, Neuroscience, Quantum Information Theory, Chemistry...

First questions for secant varieties

Given $X \subset \mathbb{P}^{N}$ we ask:
(1) [Dimensions] What is the dimension of $\sigma_{r}(X)$?

- When does $\sigma_{r}(X)$ fill the ambient \mathbb{P}^{N} ? (defectivity)
(2) [Equations] What are the polynomial defining equations of $\sigma_{r}(X)$?
(3 [Generic Identifiability] For generic $x \in \mathbb{P}^{N}$, does x have a unique expression as a sum of points from X ? (ignoring trivialities)
(1) [Decomposition] For my favorite $x \in \mathbb{P}^{N}$, can you find an expression of x as a sum of points from X ?

Sometimes $2 \Rightarrow 1 \Rightarrow 3 \Rightarrow 4$

Tensors with different types of symmetry

Suppose A, B, C are vector spaces over \mathbb{C}. Hypermatrices, symmetric, partially symmetric, skew-symmetric, and partially skew-symmetric tensors:

Space	Hypermatrix	Symmetry
$A \otimes B \otimes C$	$\left(T_{i, j, k}\right)$	
$S^{d} A$	$\left(T_{i_{1}, \ldots, i_{d}}\right)$	$T_{i_{1}, \ldots, i_{d}}=T_{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{d}\right)}$ for all $\sigma \in \mathfrak{S}_{d}$
$A \otimes S^{2} B$	$\left(T_{i, j, k}\right)$	$T_{i, j, k}=T_{i, k, j}$ for all i, j, k
$\bigwedge^{k+1} A$	$\left(T_{i_{0}, \ldots, i_{k}}\right)$	$T_{i_{0}, \ldots, i_{k}}=\operatorname{sgn}(\sigma) T_{\sigma\left(i_{0}\right), \ldots, \sigma\left(i_{k}\right)}$ for all $\sigma \in \mathfrak{S}_{k+1}$
$A \otimes \bigwedge^{k+1} B$	$\left(T_{i, j_{0}, \ldots, j_{k}}\right)$	$T_{i, j_{0}, \ldots, j_{k}}=\operatorname{sgn}(\sigma) T_{i, \sigma\left(j_{0}\right), \ldots, \sigma\left(j_{k}\right)}$ for all $\sigma \in \mathfrak{S}_{k+1}$

Partially skew-symmetric tensors (in coordinates)

Choose bases u_{1}, \ldots, u_{m} of $A \cong \mathbb{C}^{m}$ and v_{1}, \ldots, v_{n} of $B \cong \mathbb{C}^{n}$. In coordinates $T \in A \otimes \bigwedge^{2} B$ is

$$
T=\sum_{i, j, k} T_{i j k} u_{i} \otimes v_{j} \otimes v_{k}
$$

with symmetry: $T_{i j k}=-T_{i k j}$.
Collect terms:

$$
T=\sum_{i} u_{i} \otimes \sum_{j, k} T_{i j k} v_{j} \otimes v_{k}=\sum_{i} u_{i} \otimes T_{i}
$$

with $T_{i} \in \Lambda^{2} B, T$ is a collection of m skew-symmetric $n \times n$ matrices.

Tensors and examples of classical algebraic varieties

Consider each symmetry type and the (classical) variety of "rank-1" tensors:

Name	Notation	Points	Ambient Space
Segre	$\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$	$[a \otimes b \otimes c]$	$\mathbb{P}(A \otimes B \otimes C)$
Veronese	$\nu_{d}(\mathbb{P} A)$	$[a \otimes \cdots \otimes a]$	$\mathbb{P}\left(S^{d} A\right)$
Segre-Veronese	$\operatorname{Seg}\left(\mathbb{P} A \times \nu_{2}(\mathbb{P} V)\right)$	$[a \otimes b \otimes b]$	$\mathbb{P}\left(A \otimes S^{2} B\right)$
Grassmannian	$\mathbb{G}(k, A)$	$\left[a_{0} \wedge \cdots \wedge a_{k}\right]$	$\mathbb{P}\left(\Lambda^{k+1} A\right)$
Segre-Grassmann	$\operatorname{Seg}(\mathbb{P} A \times \mathbb{G}(k, B))$	$\left[a \otimes\left(b_{0} \wedge \cdots \wedge b_{k}\right)\right]$	$\mathbb{P}\left(A \otimes \Lambda^{k+1} B\right)$

In each case a rank 1 tensor can be put in the form (in an appropriate basis):

How to email the Segre-Grassmann $\operatorname{Seg}(\mathbb{P} A \times \mathbb{G}(k, B))$

```
KK = QQ;
makeRank1 = (m,k,n)->(
    E = random(KK^(m+1),KK^(n+1));
    e = gens minors(k+1,E);
    v = random(KK^(m+1),KK^1);
    matrix {flatten entries(v*e)}
)
makeRank1(2,2,5) -- a point on Seg(P^2 x G(2,5))
sum(5,i->makeRank1(2,2,5)) -- a point on sig_5(Seg(P^2 x G(2,5)))
```

(In practice I'm more careful to name the coordinates and avoid collisions.) Let $v=\left(v_{0}, \ldots, v_{m}\right)$, and let $E=\left(e_{i, j}\right)$ be a $(k+1) \times(n+1)$ matrix. Get a $(m+1) \times\binom{ n+1}{k+1}$ vector for a point on $\operatorname{Seg}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)$ as

$$
\left(v_{i} \cdot \Delta_{I}(E)\right)_{i, I},
$$

where Δ_{I} - maximal minor of E with columns $I=\left(i_{1}, \ldots, i_{k+1}\right)$. Pseudo-random points on $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)\right)$: let v and E have random entries, and summing r pseudorandom points of $\operatorname{Seg}\left(\mathbb{P}^{m} \times \mathbb{G}(k, n)\right)$.

What is a flattening?

Express a tensor $T=\sum_{i, j, k} p_{i j k} a_{i} \otimes b_{j} \otimes c_{k} \in A \otimes B \otimes C$ as a matrix (in 3 ways):

$$
\begin{aligned}
& T=\sum_{i} a_{i} \otimes\left(\sum_{j, k} p_{i j k} b_{j} \otimes c_{k}\right) \\
& T=\sum_{j} b_{j} \otimes\left(\sum_{i, k} p_{i j k} a_{i} \otimes c_{k}\right) \in(B \otimes C) \\
& \in B \otimes(A \otimes C), \\
& T=\sum_{k}\left(\sum_{i, j} p_{i j k} a_{i} \otimes b_{j}\right) \otimes c_{k} \quad \in(A \otimes B) \otimes C .
\end{aligned}
$$

Example: $T=\left[p_{i j k}\right] \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ to $\mathbb{C}^{3} \otimes\left(\mathbb{C}^{3} \otimes \mathbb{C}^{3}\right) \cong \mathbb{C}^{3} \otimes \mathbb{C}^{9}$ flattens to:

$$
\psi_{0, T}=\left(\begin{array}{lll|lll|lll}
p_{111} & p_{121} & p_{131} & p_{112} & p_{122} & p_{132} & p_{113} & p_{123} & p_{133} \\
p_{211} & p_{221} & p_{231} & p_{212} & p_{222} & p_{232} & p_{213} & p_{223} & p_{233} \\
p_{311} & p_{321} & p_{331} & p_{312} & p_{322} & p_{332} & p_{313} & p_{323} & p_{333}
\end{array}\right)
$$

When they exist, $(r+1) \times(r+1)$ minors of $\psi_{0, T}$ are (some) equations of $\sigma_{r}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$.

Equations from flattenings

Realize $T \in A \otimes B \otimes C=A \otimes(B \otimes C)$ as a linear map (a matrix)

$$
\psi_{0, T}: A^{*} \xrightarrow{\left(T_{1} T_{2} \ldots T_{l}\right)^{t}} B \otimes C
$$

Rank 1 case: Let $T_{1}=\left(\begin{array}{ccc}1 & \cdots & 0 \\ 0 & \ddots & 0\end{array}\right), T_{i}=\left(\begin{array}{ccc}0 & \ldots & 0 \\ 0 & \ddots & 0\end{array}\right), i=2 \ldots m$

$$
\psi_{0, T}=\left(\begin{array}{cccccccccc}
1 & \ldots & 0 & 0 & \cdots & 0 & \ldots & 0 & \cdots & 0 \\
0 & \ddots & 0 & \ddots & \ddots & 0 & \ldots & \ddots & \ddots & 0
\end{array}\right)^{t}
$$

If $\operatorname{Rank}(T)=1$, then $\operatorname{Rank}\left(\psi_{0, T}\right)=1$. Construction is linear in T :

$$
\begin{gathered}
\psi_{0, T}+\psi_{0, T^{\prime}}=\psi_{0, T+T^{\prime}} \\
\left(\begin{array}{c}
T_{1} \\
T_{2} \\
\vdots \\
T_{l}
\end{array}\right)+\left(\begin{array}{c}
T_{1}^{\prime} \\
T_{2}^{\prime} \\
\vdots \\
T_{l}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
T_{1}+T_{1}^{\prime} \\
T_{2}+T_{2}^{\prime} \\
\vdots \\
T_{l}+T_{l}^{\prime}
\end{array}\right)
\end{gathered}
$$

$\operatorname{Rank}\left(\psi_{0, T}\right)+\operatorname{Rank}\left(\psi_{0, T^{\prime}}\right) \leq \operatorname{Rank}\left(\psi_{0, T}+\psi_{0, T^{\prime}}\right)=\psi_{0, T+T^{\prime}}$
By subadditivity of rank, if $\operatorname{Rank}(T)=r$, then $\operatorname{Rank}\left(\psi_{0, T}\right) \leq r$.
The $(r+1) \times(r+1)$ minors of $\psi_{0, T}$ are necessary conditions for $\operatorname{Brank}(T) \leq r$.
However flattenings are trivial when $\operatorname{Rank}(T)>\min \{\operatorname{dim} A \operatorname{dim} R \operatorname{dim} C\}$

Symmetric Flattenings

Consider $\phi \in S y m^{d} V$ as a symmetric multilinear form:
ϕ eats d vectors (symmetrically) and spits out a number.
If we only feed s vectors to ϕ, it still wants to eat $d-s$ more. So we can construct a linear map

$$
\begin{aligned}
\phi_{s, d-s}: & \operatorname{Sym}^{s}\left(V^{*}\right) \rightarrow \operatorname{Sym}^{d-s} V \\
& {\left[v_{1}, \ldots, v_{s}\right] }
\end{aligned} \mapsto \phi\left(v_{1}, \ldots, v_{s}, \ldots, \ldots,{ }_{-}\right)
$$

Macaulay (1916) showed that $\operatorname{Brank} \phi \geq \operatorname{Rank} \phi_{s, d-s}$ for all $1 \leq s \leq d$. The minors of $\phi_{s, d-s}$ are called minors of Catalecticants. (Also called symmetric flattenings or special Hankel matrices).
Give some equations for the secant varieties to Veronese varieties.

Flattenings and the Segre variety

Classical: the ideal of any Segre is generated by all 2×2 minors of flattenings.

Theorem (Raicu (2012), (Garcia, Stillman and Sturmfels Conj.))
 The prime ideal of $\sigma_{2}\left(\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)\right)$ is generated by the 3×3 minors of flattenings.

Built on work of Landsberg-Manivel, Landsberg-Weyman, Geramita et al., Allman-Rhodes.
Raicu also proved the stronger analogous result for the secant variety of any Segre-Veronese.
[Michalek-O.-Zwiernik (2014)] gave a toric proof of the scheme-theoretic version that works in any characteristic using "secant cumulants."
Flattenings run out quickly: $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)\right)$ has no equations from flattenings since there are no 4×4 minors of 3×9, ([Strassen'83, Y. Qi'14].)

Exterior flattenings

Suppose $T \in A \otimes B \otimes C$. Have a natural inclusion $A \subset \bigwedge^{2} A \otimes A^{*}$.
Construct a new linear map via the inclusion

$$
A \otimes B \otimes C \quad \subset \quad \Lambda^{2} A \otimes A^{*} \otimes B \otimes C \quad=\quad\left(A^{*} \otimes B\right) \otimes\left(\Lambda^{2} A \otimes C\right)
$$

Fix $\operatorname{dim}(A)=3$. With $T=\sum_{i} u_{i} \otimes T_{i}$, we choose a good basis and write

$$
\psi_{1, T}: A \otimes B^{*} \xrightarrow{\left(\begin{array}{ccc}
0 & T_{3} & -T_{2} \\
-T_{3} & 0 & T_{1} \\
T_{2} & -T_{1} & 0
\end{array}\right)} \bigwedge^{2} A \otimes C
$$

Basic idea:

$$
\psi_{1, T+T^{\prime}}=\psi_{T}+\psi_{T^{\prime}} \quad \text { construction is linear in } T
$$

$$
\operatorname{Rank}(T)=1 \Rightarrow \operatorname{Rank}\left(\psi_{T}\right)=2
$$

$\therefore \operatorname{Rank}(T)=r \Rightarrow \operatorname{Rank}\left(\psi_{T}\right) \leq 2 r$
base case
subadditivity of matrix rank

The $(2 r+1) \times(2 r+1)$ minors of $\psi_{1, T}$ are necessary conditions for $\operatorname{Brank}(T) \leq r$.

Exterior Flattenings: $\operatorname{Rank}(T)=1 \Rightarrow \operatorname{Rank} \psi_{1, T}=2$

Let $T_{1}=\left(\begin{array}{ccc}1 & \cdots & 0 \\ 0 & \ddots & 0\end{array}\right), T_{i}=\left(\begin{array}{ccc}0 & \cdots & 0 \\ 0 & \ddots & 0\end{array}\right), i=2 . . m$.

Result is invariant under natural changes of coordinates.

Exterior flattenings (partially symmetric case)

Have natural inclusions $A \subset \bigwedge^{2} A \otimes A^{*}, S^{2} B \subset B \otimes B$.
Construct a new linear map via the inclusion $A \otimes S^{2} B \subset\left(B \otimes A^{*}\right) \otimes\left(B \otimes \bigwedge^{2} A\right)$.
Fix $m=3$. With $T=\sum_{i} u_{i} \otimes T_{i}$, we choose a good basis and write

$$
\psi_{1, T}: B^{*} \otimes A \xrightarrow{\left(\begin{array}{ccc}
0 & T_{3} & -T_{2} \\
-T_{3} & 0 & T_{1} \\
T_{2} & -T_{1} & 0
\end{array}\right)} B \otimes \bigwedge^{2} A
$$

Note $T_{i} \in S^{2} B \Rightarrow \psi_{1, T}$ is skew-symmetric \Rightarrow rank is even. Construction is linear in T :

$$
\begin{aligned}
\psi_{1, T}+\psi_{1, T^{\prime}} & =\psi_{1, T+T^{\prime}} \\
\left(\begin{array}{ccc}
0 & T_{3} & -T_{2} \\
-T_{3} & 0 & T_{1} \\
T_{2} & -T_{1} & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & T_{3}^{\prime} & -T_{2}^{\prime} \\
-T_{3}^{\prime} & 0 & T_{1}^{\prime} \\
T_{2}^{\prime} & -T_{1}^{\prime} & 0
\end{array}\right) & =\left(\begin{array}{ccc}
0 & T_{3}+T_{3}^{\prime} & -T_{2}-T_{2}^{\prime} \\
-T_{3}-T_{3}^{\prime} & 0 & T_{1}+T_{1}^{\prime} \\
T_{2}+T_{2}^{\prime} & -T_{1}-T_{1}^{\prime} & 0
\end{array}\right)
\end{aligned}
$$

$2(r+1) \times 2(r+1)$ Pfaffians of $\psi_{1, T}$ are necessary conditions for $\operatorname{Brank}(T) \leq r$.

Exterior flattenings more generally

Include $A \otimes B \otimes C \subset\left(B \otimes \bigwedge^{j} A^{*}\right) \otimes\left(C \otimes \bigwedge^{j+1} A\right)$.
Example $\operatorname{dim}(A)=l=4$: Let $T=\sum_{i=1}^{4} u_{i} \otimes T_{i}$. In suitable coordinates:

$$
\begin{aligned}
& \psi_{0, T}: B^{*} \otimes \bigwedge^{0} A^{*} \xrightarrow{\left(T_{1} T_{2} T_{3} T_{4}\right)^{t}} C \otimes \bigwedge^{1} A, \\
& \psi_{1, T}: B^{*} \otimes \Lambda^{1} A^{*} \xrightarrow{\left(\begin{array}{cccc}
0 & T_{3} & -T_{2} & 0 \\
-T_{3} & 0 & T_{1} & 0 \\
T_{2} & -T_{1} & 0 & 0 \\
T_{4} & 0 & 0 & 0 \\
0 & T_{4} & 0 & -T_{1} \\
0 & T_{4} & -T_{3}
\end{array}\right)} C \otimes \Lambda^{2} A, \\
& \psi_{2, T}: B^{*} \otimes \Lambda^{2} A^{*} \xrightarrow{\left(\begin{array}{cccccc}
-T_{4} & 0 & 0 & 0 & T_{3} & -T_{2} \\
0 & -T_{4} & 0 & -T_{3} & 0 & T_{1} \\
0 & 0 & -T_{4} & T_{2} & -T_{1} & 0 \\
T_{1} & T_{2} & T_{3} & 0 & 0 & 0
\end{array}\right)} C \otimes \Lambda^{3} A \\
& \psi_{3, T}: B^{*} \otimes \Lambda^{3} A^{*} \xrightarrow{\left(T_{1} T_{2} T_{3} T_{4}\right)} C \otimes \Lambda^{4} A .
\end{aligned}
$$

In general one finds $\operatorname{Rank}(T) \leq r \Rightarrow \operatorname{Rank}\left(\psi_{j, T}\right) \leq r\binom{l-1}{j}$.
We want to know when the necessary conditions are also sufficient.

Subspace varieties

Definition

The subspace variety $\operatorname{Sub}_{p, q, r}(A \otimes B \otimes C)$ is the variety of tensors $[T] \in \mathbb{P}(A \otimes B \otimes C)$ such that there exist subspaces $\mathbb{C}^{p} \subseteq A, \mathbb{C}^{q} \subseteq B, \mathbb{C}^{r} \subseteq C$, and $[T] \in \mathbb{P}\left(\mathbb{C}^{p} \otimes \mathbb{C}^{q} \otimes \mathbb{C}^{r}\right)$.

Theorem (Thm. 3.1, Landsberg-Weyman '07)

$\operatorname{Sub}_{p, q, r}(A \otimes B \otimes C)$ is normal with rational singularities. Its ideal is generated by the minors of flattenings;

$$
\begin{aligned}
\left(\bigwedge^{p+1} A^{*} \otimes \Lambda^{p+1}\left(B^{*} \otimes C^{*}\right)\right) & \oplus\left(\bigwedge^{q+1} B^{*} \otimes \bigwedge^{q+1}\left(A^{*} \otimes C^{*}\right)\right) \\
& \oplus\left(\Lambda^{r+1}\left(A^{*} \otimes B^{*}\right) \otimes \Lambda^{r+1} C^{*}\right)
\end{aligned}
$$

Key Point: $\mathrm{Sub}_{r, r, r} \supseteq \sigma_{r}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$ and therefore get some (determinantal) equations of the secant varieties.

Note: C. Raicu has recently proved that for any Segre-Veronese variety X, and $r \leq 2$, the ideal $I\left(\sigma_{2}(X)\right)$ is generated by 3×3 minors of flattenings.

Partially symmetric subspace and secant varieties

Definition

The subspace variety $\operatorname{Sub}_{p, q}\left(A \otimes S^{2} B\right)$ is the variety of tensors $[T] \in \mathbb{P}\left(A \otimes S^{2} B\right)$ such that there exist subspaces $\mathbb{C}^{p} \subseteq A, \mathbb{C}^{q} \subseteq B$, and $[T] \in \mathbb{P}\left(\mathbb{C}^{p} \otimes S^{2} \mathbb{C}^{q}\right)$.
$T \in \operatorname{Sub}_{p, q}\left(A \otimes S^{2} B\right)$ implies that after changing coordinates,

$$
\psi_{0, T}=\left(\begin{array}{llll}
T_{1}^{\prime} & T_{2}^{\prime} & \cdots & T_{m^{\prime}}^{\prime} \\
\hline
\end{array} 0_{\cdots} \cdots\right)^{t},
$$

with $T_{i}^{\prime}=\left(\begin{array}{cc}B_{i} & 0 \\ 0 & 0\end{array}\right)$ and B_{i} a symmetric $q \times q$ matrix.

Proposition (Cartwright-Erman-O. (2012))

The defining ideal of $\operatorname{Sub}_{p, q}\left(A \otimes S^{2} B\right)$ is generated by the $(p+1) \times(p+1)$ minors of the flattening $B^{*} \rightarrow A \otimes B$ and the $(q+1) \times(q+1)$ minors of the flattening $A^{*} \rightarrow S^{2} B$.

Theorem (Cartwright-Erman-O. (2012))

For $r \leq 5$, the ideal of $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \nu_{2}(\mathbb{P} B)\right)\right)$ is generated by $(r+1) \times(r+1)$ minors of flattenings, and $(2 r+2) \times(2 r+2)$ Pfaffians of exterior flattenings.

Skew-symmetric subspace varieties

Definition

The subspace variety $\operatorname{Sub}_{p}\left(\Lambda^{k+1} A\right)$ is the variety of tensors $[T] \in \mathbb{P}\left(\Lambda^{k+1} A\right)$ such that there exist a subspace $\mathbb{C}^{p} \subseteq A$, and $[T] \in \mathbb{P}\left(\Lambda^{k+1} \mathbb{C}^{p}\right)$.

The equations of this variety are mysterious when $k \geq 2$:

Proposition (Boralevi-O.(2012) ${ }^{1}$)

The ideal of the subspace variety $\operatorname{Sub}_{5}\left(\bigwedge^{3} \mathbb{C}^{7}\right) \subset \mathbb{P}^{34}$ is generated in degree 3 by the GL7-modules $S_{(3,1,1,1,1,1,1)} \mathbb{C}^{7}$ (28 cubics) and $S_{(2,2,2,1,1,1)} \mathbb{C}^{7}$ (224 cubics).

The space of 28 cubics is vector space isomorphic to quadrics on 7 variables. The space of 224 cubics is inherited from a space of 20 cubics on 6 variables, which is vector space isomorphic the span of the 3×3 minors of a 3×6 matrix.

Used Weyman's "Geometric Technique," Representation Theory, Bott's algorithm, and careful combinatorial book-keeping.

[^0]
Equations of secant varieties via more general flattenings

- Symmetric: Aronhold's invariant (1849): $\sigma_{3}\left(v_{3}\left(\mathbb{P}^{2}\right)\right) \varsubsetneqq \mathbb{P}^{9}$.
- Partially symmetric: Toeplitz (1877): $\sigma_{5}\left(\mathbb{P}^{2} \times \nu_{2}\left(\mathbb{P}^{3}\right)\right) \varsubsetneqq \mathbb{P}^{29}$.

Cartwright-Erman-O. (2012): $\sigma_{r}\left(\mathbb{P}^{2} \times \nu_{2}\left(\mathbb{P}^{n}\right)\right) \varsubsetneqq \mathbb{P}^{3\binom{n+2}{2}-1}, r \leq 5$.

- Partially skew-symmetric: Abo-Wan (2013):
$\sigma_{3 \ell}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,4 \ell+2)\right) \varsubsetneqq \mathbb{P}^{3\binom{4+3}{2}-1}\right.$.
- Unrestricted: Strassen (1983): $\left.\sigma_{4}\left(\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}\right)\right) \varsubsetneqq \mathbb{P}^{26}$
- Ubiquitous: Ottaviani (2007) united and generalized all of these equations with a uniform construction we call exterior flattenings.
- Landsberg-Ottaviani (2012): Many more cases, much more general.

Abo-Wan Hypersurfaces: $\sigma_{3 \ell+2}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,4 \ell+2)\right)\right)$

Consider $\sigma_{5}\left(\mathbb{P}^{2} \times \mathbb{G}(1,6)\right) \subset\left(\mathbb{P}^{3} \otimes \Lambda^{2} \mathbb{C}^{7}\right)=\mathbb{P}\left(V \otimes \Lambda^{2} W\right)$.
View $T \in V \otimes \Lambda^{2} W$) as an element in $\Lambda^{2} V^{*} \otimes \Lambda^{2} W$, which induces

$$
\varphi_{T}: V \otimes W^{*} \rightarrow V^{*} \otimes W,
$$

Explicitly φ_{T} is the (21×21) Kronecker product of two matrices:

$$
\varphi_{T}=\left(\begin{array}{ccc}
0 & v_{1} & -v_{2} \\
-v_{1} & 0 & v_{3} \\
v_{2} & -v_{3} & 0
\end{array}\right) \otimes\left(\begin{array}{cccccc}
0 & e_{12} & e_{13} & e_{14} & e_{15} & e_{16} \\
-e_{12} & 0 & e_{23} & e_{24} & e_{25} & e_{26} \\
-e_{13} & -e_{23} & 0 & e_{24} & e_{35} & e_{36} \\
-e_{14} & -e_{24} & -e_{34} & 0 & e_{37} \\
-e_{15} & -e_{25} & -e_{35} & -e_{45} & 0 & e_{46} \\
-e_{16} & -e_{26} & -e_{36} & -e_{46} & -e_{56} & e_{56} \\
-e_{17} & -e_{27} & -e_{37} & -e_{47} & -e_{57} & -e_{67}
\end{array}\right.
$$

Replace $v_{i} \otimes e_{j k}$ with $x_{i j k}$ we obtain the matrix $\varphi_{T}=$ (too big for screen).
Check: $\operatorname{Rank}(T)=1 \Rightarrow \operatorname{Rank} \varphi_{T}=4$ so $\operatorname{Rank}(T)=r \Rightarrow \operatorname{Rank} \varphi_{T} \leq 4 r$. In particular if $\operatorname{Rank} T=5$ then $\operatorname{Rank} \varphi_{T} \leq 20$, so $\operatorname{det} \varphi_{T}$ vanishes.

Check: $\operatorname{Rank}\left(\varphi_{T}\right)=21$ for random T, so $\operatorname{det} \varphi_{T}$ is non-trivial. $\operatorname{det} \varphi_{T}$ is an equation of $\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,6)\right)\right)$. (Verified in Macaulay 2.)

How to email an exterior flattening

$K K=Z Z / 101$
$T=K K[v 1, ~ v 2, ~ v 3] * * K K[w 12, ~ w 13, ~ w 14, ~ w 15, ~ w 16, ~ w 17, ~ w 23, ~ w 24, ~ w 25, ~$ $M v=\operatorname{matrix}\{\{0, \mathrm{v} 1,-\mathrm{v} 2\},\{-\mathrm{v} 1,0, \mathrm{v} 3\},\{\mathrm{v} 2,-\mathrm{v} 3,0\}\}$ Mw = matrix $\{\{0, \mathrm{w} 12, \mathrm{w} 13, \mathrm{w} 14, \mathrm{w} 15, \mathrm{w} 16, \mathrm{w} 17\}$, \{-w12, 0, w23, w24, w25, w26, w27\}, $\{-w 13,-w 23,0$, w34, w35, w36, w37\}, \{-w14, -w24, -w34, 0, w45, w46, w47\}, $\{-w 15,-w 25,-w 35,-w 45,0$, w56, w57\}, $\{-w 16,-w 26,-w 36,-w 46,-w 56,0$, w67\}, \{-w17, -w27, -w37, -w47, -w57, -w67, 0 \}
$K=M w * * M v$
for i from 1 to 6 do print(i, rank diff(K, sum(i, j-> makeRank1()))) $R=K K[x 112, x 212, x 312, x 113, x 213, x 313, x 114, x 214, x 314, x 115$, $\mathrm{P}=\mathrm{T} * * \mathrm{R}$
$\mathrm{vWTOx}=\mathrm{v} 1 * \mathrm{w} 12 * \mathrm{x} 112+\mathrm{v} 1 * \mathrm{w} 13 * \mathrm{x} 113+\mathrm{v} 1 * \mathrm{w} 14 * \mathrm{x} 114+\mathrm{v} 1 * \mathrm{w} 15 * \mathrm{x} 115+\mathrm{v} 1 * \mathrm{v}$ myMat $=\operatorname{diff}(\operatorname{sub}(K, P), v w T o x)$
mypoly = det(myMat, Strategy => Cofactor);

Kronecker product

Bertini team [N. Daleo \& J. Hauenstein] to the rescue!
How do we know that the 21×21 determinant $\operatorname{det} \varphi_{T}$ is irreducible (and hence minimally defines the ideal of $\left.\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,6)\right)\right)\right)$?

A computation in Bertini provides missing ingredient:

Proposition*

The hypersurface $\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,6)\right)\right) \subset \mathbb{P}^{62}$ has degree 21.
We have an irreducible hypersurface of degree 21 inside of the zero-locus of a degree 21 equation!

Proposition*

The hypersurface $\sigma_{8}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,10)\right)\right) \subset \mathbb{P}^{164}$ has degree 33 .
A similar 33×33 exterior flattening provides the equation.

Proposition*

The hypersurface $\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right)\right) \subset \mathbb{P}^{59}$ has degree 6 .
No 6×6 flattening... So now what?

Find equations in the ideal

Consider $\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right)\right) \subset \mathbb{P}^{59}$. Look for equations in $R=\mathbb{C}\left[x_{0}, \ldots, x_{59}\right]$. The Hilbert function of R starts like this:

$$
\begin{array}{rlrrrrr}
d & =1 & 2 & 3 & 4 & 5 & 6 \\
H F_{R}(d) & =60 & 1830 & 37820 & 595665 & 7624512 & 82598880 \\
\ldots \\
H F_{R / I}(d) & =0 & 0 & 0 & 0 & 0 & 82598879 \\
\operatorname{dim}\left(I_{d}\right) & =0 & 0 & 0 & 0 & 0 & 1
\end{array} \ldots
$$

To find the space of linear forms in the ideal, compute:
$\mathrm{M}=$ matrix $\operatorname{apply}(60, i->\{$ makeRank5 $(2,2,5)\})$;
rank M
Naively, to find the space of sextics in the ideal: compute 82598880 points on the variety, evaluate them on the 82598880 monomials of degree 6 and compute the kernel of the resulting 82598880×82598880 matrix.

Symmetry

- The symmetry group of

$$
\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right)\right) \subset \mathbb{P}^{59}=\mathbb{P}\left(A \otimes \bigwedge^{2} B\right)
$$

is change of coordinates in each factor,

$$
G L(A) \times G L(B)
$$

- A large group acts so we can use tools from Representation Theory!
- This symmetry is a powerful tool and we should exploit it!

Find equations in the ideal using representation theory

- Module notation: $S^{d}\left(A \otimes \wedge^{2} B\right)=\mathbb{C}\left[p_{i j k} \mid p_{i j k}=-p_{i k j}\right]_{d}$.
- Fact: $S^{d}\left(A \otimes \Lambda^{2} B\right)$ is a $G L(A) \times G L(B)$-module.

The coordinate ring $\mathbb{C}\left[A \otimes \bigwedge^{2} B\right]$ has an isotypic decomposition:

$$
\begin{aligned}
& \oplus_{d} \mathbb{C}\left[A \otimes \Lambda^{2} B\right]_{d}=\oplus_{d}\left(\oplus_{\lambda \vdash d, \pi \vdash+2 d}\left(S_{\lambda} A \otimes S_{\pi} B\right) \otimes \mathbb{C}^{m_{\lambda, \pi}}\right) \\
& \cup \cup \\
& \oplus_{d} \mathcal{I}_{d}(X)= \\
&\left(\oplus_{\lambda \vdash d, \pi \vdash d} \oplus_{d} \mathcal{I}_{d}(X)_{\lambda, \pi}\right)
\end{aligned}
$$

- $S_{\lambda} A \otimes S_{\pi} B$: Schur modules indexed by partitions λ and π,
- $\mathbb{C}^{m_{\lambda, \pi}}$: multiplicity space.
- Given λ, π and the multiplicity $m_{\lambda, \pi}$, there is a combinatorial algorithm for constructing polynomials!
(Modified version of Landsberg-Manivel'04 algorithm)

Invariants via Young Symmetrizers

Use LiE: sym_tensor ($\left.6,[1,0]^{\wedge}[0,0,1,0,0], A 2 A 5\right)$
\Rightarrow only one $\mathrm{SL}(3) \times \mathrm{SL}(6)$ invariant of degree 6 in $\mathbb{C}\left[A \otimes \Lambda^{2} B\right]$.
Start with partitions $(2,2,2)$ and $(3,3,3,3,3,3)$ associated (respectively) to the trivial representations of GL(3) and GL(6) in degrees 6 and 18 respectively.

Find fillings:

Use fillings as input to the Young Symmetrizer algorithm.

Invariants via Young Symmetrizers

Construct a generic polynomial (in auxiliary variables):

(1) To the filling | a | c |
| :--- | :--- |
| b | e |
| d | f | associate \(p_{V}=\left|\begin{array}{lll}a_{1} \& a_{2} \& a_{3}

b_{1} \& b_{2} \& b_{3}

d_{1} \& d_{2} \& d_{3}\end{array}\right| \cdot\left|$$
\begin{array}{lll}c_{1} & c_{2} & c_{3} \\
e_{1} & e_{2} \\
f_{1} & f_{2} & e_{3} \\
f_{3}\end{array}
$$\right|\)

(2) To the filling | a | b | c |
| :--- | :--- | :--- |
| a | b | d |
| a | d | e |
| b | d | f |
| c | e | f |
| c | e | f | associate $p_{W}=$

(3) Extract the terms $p_{V} p_{W}$: replace $a_{i} \cdot\left(a_{1 j} \wedge a_{2 k} \wedge a_{3 l}\right)$ with $x_{i, j, k, l}$
(1) Repeat previous step for b, c, \ldots, f.

The resulting polynomial will be a polynomial in the image of the Young Symmetrizer associated to our initial fillings.

Solution to Problem 6.5 in [Abo-Wan 2012]

Theorem (Abo-Daleo-Hauenstein-O.)

The hypersurface $\sigma_{5}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right) \subset \mathbb{P}^{59}$ is defined by the image of the Young symmetrizer produced by the recipe given by the filling

The resulting polynomial has precisely 10080 monomials, 5040 of which have coefficient +1 and 5040 of which have coefficient -1 . Download from ancillary files associated to the arXiv version of our paper!
"Theorem" not "Theorem*" because there is no lower degree invariant equation.

An Ottaviani-type expression?

We suppose that this equation may have an expression as a root of a determinant of a special matrix, similar to Ottaviani's degree 15 equation in [Ottaviani'09], however our initial attempts at finding such an expression were unsuccessful.

A natural guess is to start from $T \in A \otimes \wedge^{3} B$ and produce the 18×36 matrix

$$
A_{T}:(B \otimes B)^{*} \rightarrow(A \otimes B),
$$

which as rank 3 when T has rank 1 and rank $\leq 3 r$ when T has rank r.
However, this map actually factors through a map

$$
\wedge^{2} B^{*} \rightarrow(A \otimes B)
$$

but this matrix is 18×15, and it's maximum rank is 15 . This means that this construction cannot distinguish rank 5 tensors from rank 6 tensors.

Numerical Algebraic Geometry: Bertini

Let \mathcal{H} be an irreducible hypersurface and \mathcal{L} be a line so that $\operatorname{deg} \mathcal{H}=$ $|\mathcal{H} \cap \mathcal{L}|$.
(1) Generate a point $x \in \mathcal{H} \cap \mathcal{L}$. Initialize $\mathcal{W}:=\{x\}$.
(2) Perform a random monodromy loop starting at the points in \mathcal{W} :
(a) Pick a random loop $\mathcal{M}(t)$ in the space of lines so that $\mathcal{M}(0)=\mathcal{M}(1)=\mathcal{L}$.
(b) Trace the curves $\mathcal{H} \cap \mathcal{M}(t)$ starting at the points in \mathcal{W} at $t=0$ to compute the endpoints \mathcal{E} at $t=1$. (Hence, $E \subset \mathcal{H} \cap \mathcal{L}$).
(c) Update $\mathcal{W}:=\mathcal{W} \cup \mathcal{E}$.
(3) Repeat (2) until the trace test verifies that $\mathcal{W}=\mathcal{H} \cap \mathcal{L}$.

Proposition*

The hypersurface $\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right)\right) \subset \mathbb{P}^{59}$ has degree 6 .
In our execution of the procedure for the hypersurface $\mathcal{H}=\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(2,5)\right)\right)$, it took 6 random monodromy loops to compute the six points in $\mathcal{H} \cap \mathcal{L}$. The total procedure lasted 50 seconds using a single 2.3 GHz core of an AMD Opteron 6376 processor.

Proposition*

The hypersurface $\sigma_{5}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,6)\right)\right) \subset \mathbb{P}^{62}$ has degree 21.

Proposition*

The hypersurface $\sigma_{8}\left(\operatorname{Seg}\left(\mathbb{P}^{2} \times \mathbb{G}(1,10)\right)\right) \subset \mathbb{P}^{164}$ has degree 33 .
In our execution, it took 13 and 12 random monodromy loops to yield the degree many points for these cases, respectively. Using a total of sixteen 2.3 GHz cores, the total procedure lasted 2.5 and 32 minutes, respectively.

[^0]: 1 Appeared in [J.M. Landsberg, Tensors: Geometry and Applications, (p405-407), AMS GSM, vol. 128, (2012)].

