The trifocal ideal

November 27, 2017

Image reconstruction Google "Duomo Florence"

Try to reconstruct a 3D model of this beautiful structure from 2D images.

The Pinhole Camera

Model the 3D world as projective 3-space, \mathbb{P}^{3}. Homogeneous coordinates $[X]:=\left[X_{0}: X_{1}: X_{2}: X_{3}\right]$.

The 2D image is modeled by projective 2 -space, \mathbb{P}^{2}. Homogeneous coordinates $[x]:=\left[x_{0}: x_{1}: x_{2}\right]$.

The standard pinhole camera is modeled by projection $\mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$.

The projection is induced from a linear map on affine spaces, represented by a 3×4 camera matrix A.

The projection is simply $[X] \mapsto[A . X]=[x]$
Assume A has full rank. Can choose coordinates so that $A=\left(I_{3} \mid \vec{a}_{4}\right)$, where \vec{a}_{4} will be the coordinates of the image of the focal point of the camera.

Fundamental Matrices

Point correspondences between two images (cameras A_{1} and A_{2}) are encoded in the 3×3 fundamental matrix, F , defined by the algebraic conditions:

$$
\text { If } A_{1} X=x \text { and } A_{2} X=x^{\prime} \text { (a point-point correspondence) then } x^{\top} \mathrm{F} x^{\prime}=0 .
$$

Given the stacked camera matrix is (after change in coordinates)

$$
M=\left(A_{1}^{\top} \mid A_{2}^{\top}\right) \cong\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
x_{1,1} & x_{1,2} & x_{1,3} & x_{2,1} & x_{2,2} & x_{2,3}
\end{array}\right),
$$

the entries of F are the 4×4 minors of M using 2 columns from each block:

$$
F(M)=\left(\begin{array}{ccc}
0 & x_{1,3}-x_{2,3} & -x_{1,2}+x_{2,2} \\
-x_{1,3}+x_{2,3} & 0 & x_{1,1}-x_{2,1} \\
x_{1,2}-x_{2,2} & -x_{1,1}+x_{2,1} & 0
\end{array}\right) .
$$

Fundamental Matrices

Theorem (Hartley-Zisserman Thm. 9.10)

The fundamental matrix determines the camera matrices up to projective transformation. That is, if $\left(P, P^{\prime}\right)$ and $\left(\tilde{P}, \tilde{P}^{\prime}\right)$ are two pairs of matrices with the same fundamental matrix F, then there exists a nonsingular 4×4 matrix H such that $P=\tilde{P} H$ and $P^{\prime}=\tilde{P}^{\prime} H$.

If the camera matrices are not known, F has 9 homogeneous parameters (only defined up to scale) and must have rank 2 , so it is determined by the linear conditions imposed by 7 point-point correspondences. Camera matrices can be reconstructed (up to a projective change of coordinates and some finite ambiguities).
Once the two camera matrices are reconstructed, triangulation allows us to reconstruct the 3D world points associated to each point-point correspondence.
Random Sample Consensus (RANSAC) can be used to find a fundamental matrix and cameras that best explain the point correspondences.
Typical issue: sometimes difficult to determine 7 inliers in two different images.
Possible improvement: use more images to reduce the number of required inliers.

Multiview Geometry

A camera is a projection

$$
\begin{aligned}
A: \mathbb{P}^{3} & \rightarrow \mathbb{P}^{2} \\
x & \mapsto A x,
\end{aligned}
$$

given by a 3×4 camera matrix A.

For fixed $\left(A_{1}, \ldots A_{n}\right)$ cameras in general position get a map

$$
\begin{array}{rll}
\phi: \mathbb{P}^{3} & --\left(\mathbb{P}^{2}\right)^{\times n} \\
x & \mapsto & \left(A_{1} x, A_{2} x, \ldots, A_{n} x\right)
\end{array}
$$

parametrizing a multiview variety.
[AST (A Hilbert scheme in Computer Vision)] found the prime ideal for generic $\left(A_{1}, \ldots, A_{n}\right)$ and identified it in a distinguished component of the multi-graded Hilbert scheme.

But suppose we didn't know the positions of the cameras, or even if the points arose this way...

From geometry to bilinear maps and tensors

We've constructed a bi-linear map: $\quad A \times B \rightarrow C$
line: $I_{A} \subset A$ focal point: f_{1} plane: $\left\{I_{A}, f_{1}\right\}$
line: $I_{B} \subset B$ focal point: f_{2} plane: $\left\{I_{B}, f_{2}\right\}$
intersect:
$\left\{I_{A}, f_{1}\right\} \cap\left\{I_{B}, f_{2}\right\}=I_{A, B}$.
$\left\{I_{A, B}, f_{3}\right\} \cap C=: I_{C}$

Multiview Geometry to Trifocal Tensors

Set $n=3$ cameras.
The maximal minors of the 4×9 matrix $\left(A_{1}^{t}\left|A_{2}^{t}\right| A_{3}^{t}\right)$ give coordinates of a point on the Grassmannian $\operatorname{Gr}(4,9)$.

A trifocal tensor is a point whose coordinates are the 4×4 minors of $\left(A_{1}^{t}\left|A_{2}^{t}\right| A_{3}^{t}\right)$ using one column from the first two matrices and two from the third.

The trifocal variety can be constructed as a projection of the Grassmannian.
The camera matrices A_{i} are only defined up to scale, and the trifocal variety is birational to the GIT quotient $\widehat{\operatorname{Gr}(4,9)} / /\left(\mathbb{C}^{*}\right)^{3}$.

Multiview Geometry to Trifocal Tensors

Set $n=3$ cameras, with matrices A_{1}, A_{2}, A_{3}.
The maximal minors of the 4×9 matrix $\left(A_{1}^{t}\left|A_{2}^{t}\right| A_{3}^{t}\right)$ give coordinates of a point on the Grassmannian $\operatorname{Gr}(4,9) \subset \mathbb{P}\left(\bigwedge^{4} \mathbb{C}^{9}\right)$.

Let $A^{*}, B^{*}, C^{*} \cong \mathbb{C}^{3}$ be the column spaces of $A_{1}^{t}, A_{2}^{t}, A_{3}^{t}$ respectively.
Have a $G:=\mathrm{SL}(A) \times \mathrm{SL}(B) \times \mathrm{SL}(C)$-invariant subspace

$$
\bigwedge^{4} \mathbb{C}^{9}=\Lambda^{4}\left(A^{*} \oplus B^{*} \oplus C^{*}\right) \supset A^{*} \otimes B^{*} \otimes \bigwedge^{2} C^{*} \cong A^{*} \otimes B^{*} \otimes C
$$

-the maximal minors that use 1 column from each of the first two blocks and 2 from the third.
The G-equivariant projection $\operatorname{Gr}(4,9) \rightarrow \mathbb{P}\left(A^{*} \otimes B^{*} \otimes C\right)$ defines the trifocal tensors (automatically G-invariant).

The fibers of the projection are scaling in each block matrix, so the image X (the trifocal variety) is an 18 -dimensional G-variety in $\mathbb{P}\left(A^{*} \otimes B^{*} \otimes C\right)$.

General multi-focal tensors

Stack camera matrices $A_{i}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{n}$ to form the $N \times m \cdot n$ matrix

$$
M=\left(A_{1}^{\top}\left|A_{2}^{\top}\right| \ldots \mid A_{m}^{\top}\right) .
$$

M has maximal rank on an open set of camera configurations.
Fix a partition $\pi \vdash N$, with $\# \pi \leq m$ parts, $N \leq m \cdot n$, and $\pi_{1} \leq n$:
Z_{π} is the variety of the maximal minors of M using π_{i} columns from A_{i}^{\top}.

- Z_{π} is an equivariant projection from the $\operatorname{Grassmannian~} \operatorname{Gr}(N, m n)$.
- Z_{π} is invariant under the action of $\mathrm{GL}(n)^{\times \# \pi}$.
- see also [Hartley-Zisserman], [Aholt-Sturmfels-Thomas], [Heyden], [Triggs], [Faugeras-Mourrain]...

We are most interested in the case $N=4, m=4 n=3$:
$Z_{2,2}$ is the variety of fundamental matrices (skew-symmetric 3×3 matrices).
$Z_{2,1,1}$ is the variety of trifocal tensors (special $3 \times 3 \times 3$ tensors). (see [Aholt-O.'14]). $Z_{1,1,1,1}$ is the variety of quadrifocal tensors (special $3 \times 3 \times 3 \times 3$ tensors).

Main Theorem

Theorem (Aholt-O. (2014))

Let X denote the trifocal variety. The prime ideal $I(X)$ is minimally generated by 10 polynomials in degree 3, 81 polynomials in degree 5, and 1980 polynomials in degree 6.

- The polynomials have small integer coefficients $(|\cdot|<5)$ and up to 732 monomials each.
- These are the lowest degree generators of the ideal of the trifocal variety.
- Improves [Alzati-Tortora'10]'s set-theoretic equations (and lowers degrees).
- Gives a test to determine whether $T \in A^{*} \otimes B^{*} \otimes C$ is a trifocal tensor.

Proof ingredients

In general, implicitization - finding the ideal in 27 variables of an 18-dimensional variety - is difficult. Brute force is unlikely to work.

Here's an outline of how we attacked the problem:

- Representation theory of G-modules of polynomials
- Numerical Algebraic Geometry
- Invariant Theory \& Classification of Normal Forms
- Commutative Algebra

Find polynomials by any means necessary

Naively compute the Hilbert function for $I(X) \subset R=\mathbb{C}\left[x_{1}, \ldots, x_{27}\right]$ for as high a degree as possible:

$$
\begin{aligned}
H F_{R} & =(1,27,378,3654,27405,169911,906192,4272048,18156204,70607460, \ldots \\
H F_{R / I} & =(1,27,378,3644,27135, \\
\operatorname{dim}_{l} & =(0, \quad 0, \quad 0, \quad 10, \quad 270
\end{aligned}
$$

- Set $N=\operatorname{dim} R_{d}$. Make an $N \times N$ matrix of N monomials of degree d evaluated at N random points of X. Compute its kernel.

Find polynomials by any means necessary

Naively compute the Hilbert function for $I(X) \subset R=\mathbb{C}\left[x_{1}, \ldots, x_{27}\right]$ for as high a degree as possible using Representation Theory:

$$
\begin{aligned}
H F_{R} & =(1,27,378,3654,27405,169911,906192,4272048,18156204,70607460, \ldots \\
H F_{R / I} & =(1,27,378,3644,27135,166050,865860,3942162,15966072,58409126, ? \\
\operatorname{dim}_{I} & =\left(\begin{array}{lllll}
0, & 0, & 0, & 10, & 270,
\end{array} 3861,40332, \quad 329886, \quad 2190132,12198334, ?\right.
\end{aligned}
$$

- Set $N=\operatorname{dim} R_{d}$. Make an $N \times N$ matrix of N monomials of degree d evaluated at N random points of X. Compute its kernel.
- Use Representation Theory of tensor products of Schur modules to aid computations:
- G-structure reduces the computation to computing kernels of several smaller blocks.
- We also get a G-module description of the lowest degree parts of $I(X)$ and $\mathbb{C}[X]$.

Representation theory results

We applied machinery introduced by Landsberg and Manivel to perform our representation theoretic computations.

Starting in degree 3, we computed the highest weight spaces of G-modules of polynomials spanning the ideal $I(X)$ in each degree up to 9 .

Using Macaulay 2^{1}, we found the minimal generators in those degrees.

$$
\begin{aligned}
& H F_{R}=(1,27,378,3654,27405,169911,906192,4272048,18156204,70607460, \ldots \\
& H F_{R / I}=(1,27,378,3644,27135,166050,865860,3942162,15966072,58409126, ? \\
& \operatorname{dim}_{I}=(0,0, \quad 0, \quad 10, \quad 270, \quad 3861,40332,329886,2190132,12198334, ? \\
& \text { mingens } I=(0, \quad 0, \quad 0, \quad 10, \quad 0, \quad 81, \quad 1980, \quad 0, \quad 0, \quad 0 \text { ? }
\end{aligned}
$$

[^0]
Main Theorem (Invariant description)

Let $X \subset \mathbb{P}\left(A^{*} \otimes B^{*} \otimes C\right)$ be the trifocal variety, $G=\mathrm{SL}(A) \times \mathrm{SL}(B) \times \mathrm{SL}(C)$.
Given partitions λ, μ, ν of d, let $S_{\lambda} S_{\mu} S_{\nu}$ denote the G-module $S_{\lambda} A \otimes S_{\mu} B \otimes S_{\nu} C^{*}$ of polynomials in $S^{d}\left(A \otimes B \otimes C^{*}\right)$.

Theorem (Aholt-O.)

The ideal of X is generated by the following G-modules.

$M_{3}=\Lambda^{3} \Lambda^{3} S^{3}$,	10 cubics,
$M_{5}=S_{221} S_{221} S_{311} \oplus S_{221} S_{221} S_{221}$,	81 quintics,
$M_{6}=S_{222} S_{33} S_{33} \oplus S_{33} S_{222} S_{33} \oplus S_{222} S_{33} S_{411} \oplus S_{33} S_{222} S_{411}$	
$\oplus S_{33} S_{411} S_{222} \oplus S_{411} S_{33} S_{222} \oplus S_{33} S_{33} S_{222}$	
$\oplus S_{33} S_{321} S_{321} \oplus S_{321} S_{33} S_{321}$,	and 1980 sextics.

Normal form of a trifocal tensor (main orbit)

A (rank 4) tensor in $A^{*} \otimes B^{*} \otimes C$:
$T=a_{1} \otimes b_{2} \otimes c_{1}+a_{3} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3}$.
3 contractions:
3 flattenings to 3×9 matries:

F-Rank ${ }_{c}=3$

Evgeniy Martyushev's Normal form ("F" on Nurmiev's list)
A (rank 4) tensor in $A^{*} \otimes B^{*} \otimes C$:
$E=a_{1} \otimes\left(b_{2}+b_{3}\right) \otimes c_{1}+\left(-a_{2}-a_{3}\right) \otimes b_{1} \otimes c_{1}+a_{2} \otimes\left(b_{3}-b_{1}\right) \otimes c_{2}+\left(a_{1}-a_{3}\right) \otimes b_{2} \otimes c_{2}$
3 contractions:
3 flattenings to 3×9 matries:

$$
\begin{aligned}
& E(A)\left(\begin{array}{ccc}
-a_{2}-a_{3} & -a_{2} & 0 \\
a_{1} & a_{1}-a_{3} & 0 \\
a_{1} & a_{2} & 0
\end{array}\right) \quad\left(\begin{array}{c|ccc|ccc|ccc}
b c & 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\
\hline a_{1} & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
a_{2} & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
a_{3} & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0
\end{array}\right), \\
& E(B)\left(\begin{array}{ccc}
b_{2}+b_{3} & b_{2} & 0 \\
-b_{1} & -b_{1}+b_{3} & 0 \\
-b_{1} & -b_{2} & 0
\end{array}\right) \quad\left(\begin{array}{c|ccc|ccc|ccc}
a c & 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\
\hline b_{1} & 0 & 0 & 0 & -1 & -1 & 0 & -1 & 0 & 0 \\
b_{2} & 1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
b_{3} & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \text { F-Rank }{ }_{B}=3 \\
& E(C)\left(\begin{array}{ccc}
0 & c_{1}+c_{2} & c_{1} \\
-c_{1}-c_{2} & 0 & c_{2} \\
-c_{1} & -c_{2} & 0
\end{array}\right) \quad\left(\begin{array}{c|ccc|ccc|ccc}
a b & 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\
c_{1} & 0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\
c_{2} & 0 & 1 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \\
c_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

Normal form "9"

A (rank 3) tensor in $A^{*} \otimes B^{*} \otimes C$:
$S=a_{1} \otimes b_{1} \otimes c_{1}+a_{1} \otimes b_{2} \otimes c_{2}+a_{2} \otimes b_{2} \otimes c_{2}+a_{2} \otimes b_{3} \otimes c_{3}$
3 contractions:

$$
3 \text { flattenings to } 3 \times 9 \text { matries: }
$$

$$
S(A)=\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{1}+a_{2} & 0 \\
0 & 0 & a_{2}
\end{array}\right)
$$

$$
\text { P-Rank }_{A}=3
$$

$\left(\begin{array}{c|ccc|ccc|ccc}b c & 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\ \hline a_{1} & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ a_{2} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ a_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$,

$$
\text { F-Rank } A_{A}=2
$$

$S(B)=\left(\begin{array}{ccc}b_{1} & b_{2} & 0 \\ 0 & b_{2} & b_{3} \\ 0 & 0 & 0\end{array}\right) \quad$ P-Rank ${ }_{B}=2\left(\begin{array}{c|ccc|ccc|ccc}a c & 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\ \hline b_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ b_{2} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ b_{3} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$,
$F-$ Rank $_{B}=3$
$S(C)=\left(\begin{array}{ccc}c_{1} & c_{2} & 0 \\ 0 & c_{2} & c_{3} \\ 0 & 0 & 0\end{array}\right) \quad$ P-Rank $C=2\left(\begin{array}{c|ccc|cccccc}a b & 11 & 12 & 13 & 21 & 22 & 23 & 31 & 32 & 33 \\ \hline c_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ c_{2} & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ c_{3} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$,
F-Rank ${ }_{C}=3$

Polarization: how to write down 10 special cubics

Think of a $3 \times 3 \times 3$ tensor as three 3×3 blocks of a matrix $T=\left(T_{1}\left|T_{2}\right| T_{3}\right)$

$$
=\left(\begin{array}{ccc|ccc|ccc}
T 000 & T 100 & T 200 & T 001 & T 101 & T 201 & T 002 & T 102 & T 202 \\
T 010 & T 110 & T 210 & T 011 & T 111 & T 211 & T 012 & T 112 & T 212 \\
T 020 & T 120 & T 220 & T 021 & T 121 & T 221 & T 022 & T 122 & T 222
\end{array}\right)
$$

Use dummy variables $z 1, z 2, z 3$ to form the generic contraction:

$$
T(z)=z 1 T_{1}+z 2 T_{2}+z 3 T_{3} .
$$

$\left(\begin{array}{ccc}T 000 z 0+T 001 z 1+T 002 z 2 & T 100 z 0+T 101 z 1+T 102 z 2 & T 200 z 0+T 201 z 1+T 202 z 2 \\ T 010 z 0+T 011 z 1+T 012 z 2 & T 110 z 0+T 111 z 1+T 112 z 2 & T 210 z 0+T 211 z 1+T 212 z 2 \\ T 020 z 0+T 021 z 1+T 022 z 2 & T 120 z 0+T 121 z 1+T 122 z 2 & T 220 z 0+T 221 z 1+T 222 z 2\end{array}\right)$

If T is a trifocal tensor then $T(z)$ is a bifocal tensor for all z.
Recall F is a bifocal tensor if and only if it has rank 2.
Therefore $\operatorname{det}(T(z)) \equiv 0$. The coefficients in z are 10 cubic equations in the entries of T.
Gives a basis of the Schur Module $\left(S^{3} V_{1} \otimes \Lambda^{3} V_{2} \otimes \Lambda^{3} V_{3}\right)^{*}$.

Bertini and the degree

Bertini ${ }^{2}$ is a system for Numerical Algebraic Geometry. Computes a numerical primary decomposition, ignoring embedded components and multiplicities.
6.5 hours (2 processors) or 10minutes (48 processors - Jon's cluster):

Computation (Hauenstein/Bertini)

Let M_{3} denote the 10 coefficients (in x_{1}, x_{2}, x_{3}) of the cubic $\operatorname{det}\left(x_{1} T_{1}+x_{2} T_{2}+x_{3} T_{3}\right)$. The zero set of M_{3} has precisely 4 components:
In codimension 7 there are 2 components, each of degree 36 .
In codimension 8 there is 1 component of degree 297.
In codimension 10 there is 1 component of degree 1035.
Components are F-Rank-(2, 3, 3), F-Rank-(3, 2, 3), Trifocal, P-Rank-(2, 2, 2).
Corroborates result using Nurmiev's poset (next).
We also learn the degree of each integral variety!

[^1]
Orbit classification and normal forms

$\operatorname{SL}(3)^{\times 3}$ acts on $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ with infinitely many orbits, but they are classified ${ }^{1}$.

Get normal forms for every orbit. Easy to check which orbits are in the zero-locus of a set of polynomials.

The zero-locus of the polynomials coming from P-Rank- $(3,3,2)$ consist of the following orbits with poset structure (Nurmiev)

4 sources in the poset means that P-Rank- $(3,3,2)$ is the union of 4 orbit closures (irreducible varieties).
[${ }^{1}$ Thrall-Chanler'38, Ng '95, Vinberg-Ėlašvili'78, Nurmiev'00]

Nurmiev Poset:

Determine whether a given tensor is trifocal

- Separate orbits:
- The conditions P-Rank- $(3,3,2)$ and F-Rank- $(3,3,3)$ (vanishing and non-vanishing) separate the trifocal orbit from the other orbits.
- Up to generic choices (generically complete set of equations):
- [AT'10] showed 3 cubic, 3 quintic and 2 sextic equations, and 2 degree 4 inequalities define a Zariski open subset of trifocal tensors.
- Set-theoretic defining equations
- [AT'10] used 10 degree 3, 20 degree 9,6 degree 12 equations.
- Add in more polynomials to eliminate other geometric components from P-Rank-(3, 3, 2).
- Ideal-theoretic defining equations
- Add in more polynomials to eliminate other embedded components from the ideal.

Notions of degree

- Bertini finds 297 simple points in a random codimension-sized linear space intersecting the trifocal variety, so the degree of the trifocal variety is 297 (...up to numerical precision and our trust in Bertini).
- A Gröbner basis computation in Macaulay2 shows that $J=\left\langle M_{3}+M_{5}+M_{6}\right\rangle$, (the $10+81+1980$ polynomials) has degree 297 [the leading coefficient of the Hilbert polynomial and the degree of the top dimensional component].
- Conclude that the top dimensional component of J agrees with the trifocal variety X, and the multiplicity of $I(X)$ is 1 in J.
- The set-theoretic result implies that the geometric degree of J (sum of degrees of all isolate components) is 297.
- What about possible embedded components? i.e. can we show that the arithmetic degree (sum of degrees of all embedded and isolated components) of J is 297 ?

Zero divisors and Hilbert series

Zero divisors and Hilbert series

The trifocal variety corresponds to the closure of orbit 11" from Nurmiev. The first orbits in the closure are $14,15,15$.
G is connected. So the associated primes in a primary decomposition are G-invariant.

Possible minimal primary decomposition of J :

$$
J=I(X) \cap Q_{14} \cap Q_{15} \cap Q_{15^{\prime}}
$$

with primary ideals Q_{i} and assoc. primes P_{i}.

The orbit closure poset is also a poset of G-stable primes.

We want to show that the primary components Q_{14}, Q_{15}, and $Q_{15^{\prime}}$ do not occur.

Zero divisors and Hilbert series ${ }^{4}$

Basic fact ${ }^{3}$: The set of zero divisors of R / J is the union of prime ideals that contain J.
Suppose $J=I(X) \cap Q_{14} \cap Q_{15} \cap Q_{15^{\prime}}, \operatorname{ass}\left(Q_{i}\right)=P_{i}$.
Suppose $f \in P_{i}$ has degree d. If f is not a zero-divisor of R / J, the following sequence is exact

$$
0 \longrightarrow(R / J)(-d) \xrightarrow{f} R / J \longrightarrow R /(J+f) \longrightarrow 0 .
$$

Since $H_{(R / J)(-d)}(t)=t^{d} H_{(R / J)}(t)$, by the additivity of Hilbert series,

$$
\begin{equation*}
\left(1-t^{d}\right) H_{R / J}(t)=H_{R /(J+f)}(t) . \tag{1}
\end{equation*}
$$

If f is a zero-divisor, (??) fails for some t.
Else f is not a zero-divisor and $J \not \subset P_{i}$.

[^2]
Zero divisors and Hilbert series

- We selected f in P_{14}, (resp. $P_{15}, P_{15^{\prime}}$), and computed a Gröbner basis and the Hilbert series of $J+f$ in 10 hours (resp. 45hrs) on a server with 8 processors and 16 GB of RAM.
- For each f we confirmed the validity of

$$
\left(1-t^{d}\right) H_{R / J}(t)=H_{R /(J+f)}(t)
$$

- So, $P_{14}, P_{15}, P_{15^{\prime}}$ are not imbedded in J.
- Therefore J is prime and agrees with $I(X)$.

Summary

The trifocal variety and its ideal have been studied using the following tools

- Symmetry of the variety and the Representation Theory of its ideal
- found all polynomials in low degree (up to 9)
- Numerical Algebraic Geometry (Bertini) - computing numerical primary decomposition of the first polynomials we encountered
- found the degree of the trifocal variety
- Classification of orbits - a list of all possible G-varieties and minimal G-stable prime ideals
- Symbolic (Gröbner basis) computations - degree, Hilbert Series...
- Commutative algebra - ruling out possible embedded components of the known ideal

Summary

The trifocal variety and its ideal have been studied using the following tools

- Symmetry of the variety and the Representation Theory of its ideal
- found all polynomials in low degree (up to 9)
- Numerical Algebraic Geometry (Bertini) - computing numerical primary decomposition of the first polynomials we encountered
- found the degree of the trifocal variety
- Classification of orbits - a list of all possible G-varieties and minimal G-stable prime ideals
- Symbolic (Gröbner basis) computations - degree, Hilbert Series...
- Commutative algebra - ruling out possible embedded components of the known ideal THANKS!

We would like to give a complete algebraic description of the quadrifocal variety Z by finding the generators of its defining ideal $I(Z)$ (the implicit defining equations of the model).

Naively, to find out if the variety Z lives in a linear subspace, put the coordinates of 81 points in the rows of a matrix $P=\left(\begin{array}{c}-Z_{1}- \\ \vdots \\ -Z_{81}-\end{array}\right)$ The null space of P is the vector space of linear forms vanishing on the 81 points (and very likely all of Z).

If $\operatorname{Null}(P)=0$, there are no linear forms in the ideal of Z.
In higher degree d we can Veronese re-embed the points and solve another linear algebra problem to find the space of degree d polynomials vanishing on Z.

But the dimensions grow quickly:

(1

The ideal $I(Z)$ is a $G=\mathfrak{S}_{4} \ltimes G L(3)^{\times 4}$-submodule of $R=\mathbb{C}\left[\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}\right]$. R has a G-isotypic decomposition:

$$
R=\bigoplus_{d \geq 0} \bigoplus_{\pi \vdash_{4} d} S_{\pi} V \otimes M_{\pi}
$$

where π is a multi-partition, the sum is over non-redundant permutations,

- Schur module: $S_{\pi} V=\bigoplus_{\sigma \in \mathfrak{G}_{4} / \sim}\left(S_{\pi_{\sigma .1}} V_{1} \otimes S_{\pi_{\sigma, 2}} V_{2} \otimes S_{\pi_{\sigma .3}} V_{3} \otimes S_{\pi_{\sigma .4}} V_{4}\right)$
- Multiplicity space (Specht Module): M_{π}.

Our tasks for small degree d are the following:

- Compute a basis of M_{π} for each π.
- Evaluate the highest-weight space of $S_{\pi} V \otimes M_{\pi}$ on points of Z.
- Obtain a list of G-modules (with multiplicity) in $I(Z)$.
- Determine which modules are among the minimal generators.
- Determine the maximal degree of minimal generators.

Invariant Theory and Young Symmetrizers

Multi-partition: $(221,221,221,221)$,

Auxiliary polynomial:
$\boldsymbol{p}=\left|\begin{array}{lll}a_{1}^{1} & a_{2}^{1} & 1_{3}^{1} \\ b_{1}^{1} & b_{2}^{1} & b_{3}^{1} \\ c_{1}^{1} & c_{2}^{1} & c_{3}^{1}\end{array}\right|\left|\begin{array}{ll}d_{1}^{1} & d_{2}^{1} \\ e_{1}^{1} & e_{2}^{1}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ b_{1}^{2} & b_{2}^{2} & b_{3}^{2} \\ c_{1}^{2} & c_{2}^{2} & c_{3}^{2}\end{array}\right|\left|\begin{array}{lll}d_{1}^{2} & d_{2}^{2} \\ e_{1}^{2} & e_{2}^{2}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{3} & a_{2}^{3} & a_{3}^{3} \\ b_{1}^{3} & b_{2}^{3} & b_{3}^{3} \\ c_{1}^{3} & c_{2}^{3} & c_{3}^{3}\end{array}\right|\left|\begin{array}{lll}d_{1}^{3} & d_{1}^{3} \\ e_{1}^{3} & e_{2}^{3}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{4} & a_{2}^{4} & a_{3}^{4} \\ b_{1}^{4} & b_{2}^{4} & b_{3}^{4} \\ c_{1}^{4} & c_{2}^{4} & c_{3}^{4}\end{array}\right|\left|\begin{array}{lll}d_{1}^{4} & d_{2}^{4} \\ e_{1}^{4} & e_{2}^{4}\end{array}\right|$
(1) Start with $p(a, b, c, d, e, x)$ of multi-degree (4, 4, 4, 4, 4, 0).
(2) Replace every $a_{i}^{1} a_{j}^{2} a_{k}^{3} a_{l}^{4}$ with $x_{i, j, k, l}$

- Produce a polynomial of multi-degree ($0,4,4,4,4,1$).
(3) Replace every $b_{i}^{1} b_{j}^{2} b_{k}^{3} b_{l}^{4}$ with $x_{i, j, k, l}$
- Produce a polynomial of multi-degree ($0,0,4,4,4,2$).
(9) Repeat for c, d, e,
- Produce $P(x)$ of multi-degree ($0,0,0,0,0,5$) (possibly zero).
(3) output: $P(x)$ highest weight vector of $S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221}$.

Evaluation of Young Symmetrizers

Auxiliary polynomial:
$\boldsymbol{p}=\left|\begin{array}{ll}a_{1}^{1} & a_{2}^{1} \\ b_{1}^{1} & b_{2}^{1} \\ b_{2}^{1} & b_{3}^{1} \\ c_{1}^{1} & c_{2}^{1} \\ c_{3}^{1}\end{array}\right|\left|\begin{array}{lll}d_{1}^{1} & d_{2}^{1} \\ e_{1}^{1} & e_{2}^{1}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ b_{1}^{2} & b_{2}^{2} & b_{3}^{2} \\ c_{1}^{2} & c_{2}^{2} & c_{3}^{2}\end{array}\right|\left|\begin{array}{llll}d_{1}^{2} & d_{2}^{2} \\ e_{1}^{2} & e_{2}^{2}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{3} & a_{2}^{3} & a_{3}^{3} \\ b_{1}^{3} & b_{2}^{3} & b_{3}^{3} \\ c_{1}^{3} & c_{2}^{3} & c_{3}^{3}\end{array}\right|\left|\begin{array}{lll}d_{1}^{3} & d_{2}^{3} \\ e_{1}^{3} & e_{2}^{3}\end{array}\right| \cdot\left|\begin{array}{lll}a_{1}^{4} & a_{2}^{4} & a_{3}^{4} \\ b_{1}^{4} & b_{2}^{4} & b_{3}^{4} \\ c_{1}^{4} & c_{2}^{4} & c_{3}^{4}\end{array}\right|\left|\begin{array}{lll}d_{1}^{4} & d_{2}^{4} \\ e_{1}^{4} & e_{2}^{4}\end{array}\right|$
Point: $Z \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$
(1) Start with $p(a, b, c, d, e, x)$ of multi-degree (4, 4, 4, 4, 4, 0).
(2) Replace every $a_{i}^{1} a_{j}^{2} a_{k}^{3} a_{l}^{4}$ with $x_{i, j, k, l}$ and substitute $x_{i, j, k, l} \rightarrow Z_{i, j, k, l}$.

- Produce a polynomial of multi-degree ($0,4,4,4,4,0$).
(3) Replace every $b_{i}^{1} b_{j}^{2} b_{k}^{3} b_{l}^{4}$ with $x_{i, j, k, l}$ and substitute $x_{i, j, k, l} \rightarrow Z_{i, j, k, l}$.
- Produce a polynomial of multi-degree ($0,0,4,4,4,0$).
(9) Repeat for c, d, e,
(5) output: the value of $p(Z)$.
- Producing $p(Z)$ takes much less time and memory than $p(x)$.

Compute a basis of M_{π} for each π.
The following fillings form a basis of $M_{(221),(221),(221),(221)}$:

Check $\operatorname{rank}\left(p_{i}\left(Z_{j}\right)\right)$ for 6 random points Z_{j}, \Rightarrow independence.
A character computation \Rightarrow spanning.

Evaluate the highest-weight space of $S_{\pi} V \otimes M_{\pi}$ on Z.

Using the basis of $M_{(221),(221),(221),(221)}$ and Young symmetrizers, populate the matrix (one processor core per entry)

$$
\left(p_{i}\left(Z_{j}\right)\right)
$$

for 6 random points Z_{j} of Z.
Find null-space (kernel) is the span of

$$
(-11 / 12 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1)^{T}
$$

So $\left(S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3} \otimes S_{221} \mathbb{C}^{3}\right)$ has multiplicity 1 in $I(Z)$.

Quadrifocal Hilbert Function

Compute the Hilbert function for $I(Z) \subset R=\mathbb{C}\left[x_{1}, \ldots, x_{81}\right]$ for as high a degree as possible. Using Representation Theory and parallel computing we found:

d	$=$	0	1	2	3	4	5	6	7	8
$H F_{R}$	$=$	$(1$	81	3321	91881	1929501	32801517	470155077	5843355957	64276915527
dim_{I}	$=$	$(0$	0	0	600	48600	1993977	54890407	1140730128	18051062139
mingens	$=$	$(0$	0	0	600	0	≥ 1377	37586	$? 0$	$? 162000$
-- deg		$\#$ reps	max_mult							

Obtain a list of G-modules (with multiplicity) in $I(Z)$.

Repeat the process for isotypic decompositions of $\mathbb{C}\left[\left(\mathbb{C}^{3}\right)^{\otimes 4}\right]_{d}$.
Obtain multiplicities of all modules in $I(Z)_{d}$ for small degree d.
For instance, $I(Z)_{d}=0$ for $d=1,2$
Input the results into SchurRings (by Stillman and Raicu) in Macaualy2.
Modules are represented as polynomials, with coefficients the multiplicities. For example $I(Z)_{3}$ is expressed as

$$
\begin{aligned}
& \left(s_{(1,1,1)} t_{(1,1,1)} u_{3}+\left(s_{(1,1,1)} t_{3}+s_{3} t_{(1,1,1)}\right) u_{(1,1,1)}\right) v_{3} \\
& \quad+\left(\left(s_{(1,1,1)} t_{3}+s_{3} t_{(1,1,1)}\right) u_{3}+s_{3} t_{3} u_{(1,1,1)}\right) v_{(1,1,1)}
\end{aligned}
$$

or modding out by the \mathfrak{S}_{4} action, $I(Z)_{3}=s_{3} t_{3} u_{(1,1,1)} v_{(1,1,1)}$
which represents the module $\mathfrak{S}_{4} \cdot\left(S_{3} \mathbb{C}^{3} \otimes S_{3} \mathbb{C}^{3} \otimes S_{1,1,1} \mathbb{C}^{3} \otimes S_{1,1,1} \mathbb{C}^{3}\right)$.

Determine which modules are minimal generators.

Let $R=\mathbb{C}\left[\left(\mathbb{C}^{3}\right)^{\otimes 4}\right]$. Using the Young symmetrizer algorithm,
$I(Z)_{4}=\left(s_{4} t_{4}+\left(s_{4}+s_{(3,1)}\right) t_{(3,1)}\right) u_{(2,1,1)} v_{(2,1,1)}$
Using SchurRings, we find that
$I(Z)_{3} \cdot R_{1}=I(Z)_{4}$.
(all multiplicities are one, and every module in $I(Z)_{4}$ occurs in $I(Z)_{3} \cdot R_{1}$)
So there are no minimal generators in degree 4.
We find two modules in $I(Z)_{5}$ that cannot occur in $I(Z)_{3} \cdot R_{2}$:
$s_{(3,1,1)} t_{(3,1,1)} u_{(3,1,1)} v_{(3,1,1)}+s_{(2,2,1)} t_{(2,2,1)} u_{(2,2,1)} v_{(2,2,1)}$
We find the following modules occur in $I(Z)_{6}$ but cannot occur in $I(Z)_{5} \cdot R_{1}$:
$\left(s_{6} t_{(3,3)} u_{(3,3)}+\left(\left(2 s_{(4,1,1)}+2 s_{(3,3)}\right) t_{(3,3)}+s_{(3,2,1)} t_{(3,2,1)}+2 s_{(2,2,2)} t_{(2,2,2)}\right) u_{(2,2,2)}\right) v_{(2,2,2)}$
We find that all modules in $I(Z)_{7}$ can occur in $I(Z)_{6} \cdot R_{1}$,
strong evidence that there are no minimal generators in degree 7 .
In degree 8 we find a surprise: $S_{4,4} S_{4,4} S_{4,4} S_{4,2,2} \otimes \mathbb{C}^{2}$ must occur among the minimal generators.
In degree 9 we weren't able to compute all modules because of a lack of computing time, but

graded piece	$\operatorname{dim} I_{d}$	necessary G modules of minimal generators	dimension of mingens
I_{2}	0	$\mathcal{M}_{2}=0$	0
I_{3}	600	$\mathcal{M}_{3}=S_{3} S_{3} S_{1,1,1} S_{1,1,1}$	600
I_{4}	48,600	$\mathcal{M}_{4}=0$	0
15	1,993,977	$\begin{aligned} \mathcal{M}_{5}= & S_{3,1,1} S_{3,1,1} S_{3,1,1} S_{3,1,1} \\ & \oplus S_{2,2.1} S_{2,2.1} S_{2,2.1} S_{2,2,1} \end{aligned}$	1,377
I_{6}	54,890,407	$\begin{aligned} \mathcal{M}_{6}= & S_{4,1,1} S_{3,3} S_{2,2,2} S_{2,2,2} \otimes \mathbb{C}^{2} \\ & \oplus S_{3,3} S_{3,3} S_{2,2,2} S_{2,2,2} \otimes \mathbb{C}^{2} \\ & \oplus S_{3,2,1} S_{3,2,1} S_{2,2,2} S_{2,2,2} \\ & \oplus S_{2,2,2} S_{2,2,2} S_{2,2,2} S_{2,2,2} \otimes \mathbb{C}^{2} \\ & \oplus S_{6} S_{3,3} S_{3,3} S_{2,2,2} \end{aligned}$	37,586
I_{7}	1,140,730,128	$\mathcal{M}_{7}=0$	0
18	18,051,062,139	$\mathcal{M}_{8}=S_{4,4} S_{4,4} S_{4,4} S_{4,2,2} \otimes \mathbb{C}^{2}$	162,000
19	$\geq 188,850,321,637$	$\begin{aligned} \mathcal{M}_{9} \geq & S_{5,4} S_{5,4} S_{5,4} S_{4,3,2} \\ & \oplus S_{5,4} S_{5,4} S_{5,4} S_{5,2,2} \end{aligned}$	3,087,000

Table: The ideal of the quadrifocal variety up to degree 9 . We used M 2 to rule out many possible minimal generators and conjecture that these equations suffice to define the quadrifocal variety.

[^0]: ${ }^{1}$ Grayson-Stillman

[^1]: ${ }^{2}$ [Bates, Hauenstein, Sommese, Wampler]

[^2]: ${ }^{3}$ Atiyah-MacDonald Prop. 4.7
 ${ }^{4}$ Thanks to Steven Sam for suggesting we try this computation.

