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Image reconstruction
Google “Duomo Florence”

Try to reconstruct a 3D model of this beautiful structure from 2D images.
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The Pinhole Camera

Model the 3D world as projective 3-space, P3.
Homogeneous coordinates [X ] := [X0 : X1 : X2 : X3].

The 2D image is modeled by projective 2-space, P2.
Homogeneous coordinates [x ] := [x0 : x1 : x2].

The standard pinhole camera is modeled by projection P3 → P2.

The projection is induced from a linear map on affine spaces, represented by a 3× 4 camera
matrix A.

The projection is simply [X ] 7→ [A.X ] = [x ]

Assume A has full rank. Can choose coordinates so that A =
(
I3|~a4

)
,

where ~a4 will be the coordinates of the image of the focal point of the camera.
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Fundamental Matrices

Point correspondences between two images (cameras A1 and A2) are encoded
in the 3× 3 fundamental matrix, F, defined by the algebraic conditions:

If A1X = x and A2X = x ′ (a point-point correspondence) then x>Fx ′ = 0.

Given the stacked camera matrix is (after change in coordinates)

M =
(
A>1 | A>2

) ∼= (
1 0 0
0 1 0
0 0 1

x1,1 x1,2 x1,3

1 0 0
0 1 0
0 0 1

x2,1 x2,2 x2,3

)
,

the entries of F are the 4× 4 minors of M using 2 columns from each block:

F (M) =

 0 x1,3 − x2,3 −x1,2 + x2,2

−x1,3 + x2,3 0 x1,1 − x2,1

x1,2 − x2,2 −x1,1 + x2,1 0

 .
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Fundamental Matrices

Theorem (Hartley-Zisserman Thm. 9.10)

The fundamental matrix determines the camera matrices up to projective transformation.
That is, if (P,P ′) and (P̃, P̃ ′) are two pairs of matrices with the same fundamental matrix F,
then there exists a nonsingular 4× 4 matrix H such that P = P̃H and P ′ = P̃ ′H.

If the camera matrices are not known, F has 9 homogeneous parameters (only defined up to
scale) and must have rank 2, so it is determined by the linear conditions imposed by 7
point-point correspondences. Camera matrices can be reconstructed (up to a projective
change of coordinates and some finite ambiguities).

Once the two camera matrices are reconstructed, triangulation allows us to reconstruct the 3D
world points associated to each point-point correspondence.

Random Sample Consensus (RANSAC) can be used to find a fundamental matrix and cameras
that best explain the point correspondences.

Typical issue: sometimes difficult to determine 7 inliers in two different images.

Possible improvement: use more images to reduce the number of required inliers.
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Multiview Geometry [Hartley-Zisserman]

A camera is a projection

A : P3 99K P2

x 7→ Ax ,

given by a 3× 4 camera matrix A.

For fixed (A1, . . .An) cameras in general
position get a map

φ : P3 99K (P2)×n

x 7→ (A1x ,A2x , . . . ,Anx)

parametrizing a multiview variety.

[AST (A Hilbert scheme in Computer Vision)] found the prime ideal for generic (A1, . . . ,An) and
identified it in a distinguished component of the multi-graded Hilbert scheme.

But suppose we didn’t know the positions of the cameras, or even if the points arose this way...
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From geometry to bilinear maps and tensors

A
B

C

lA

lB

lC

lA,B

f1

f2

f3 line: lA ⊂ A
focal point: f1
plane: {lA, f1}

line: lB ⊂ B
focal point: f2
plane: {lB , f2}

intersect:
{lA, f1} ∩ {lB , f2} = lA,B .
{lA,B , f3} ∩ C =: lC

We’ve constructed a bi-linear map: A× B → C i.e. a (trifocal) tensor in A∗ ⊗ B∗ ⊗ C .
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Multiview Geometry to Trifocal Tensors

Set n = 3 cameras.
The maximal minors of the 4× 9 matrix (At

1 | At
2 | At

3) give coordinates of a point on the
Grassmannian Gr(4, 9).

A trifocal tensor is a point whose coordinates are the 4× 4 minors of (At
1 | At

2 | At
3) using one

column from the first two matrices and two from the third.

The trifocal variety can be constructed as a projection of the Grassmannian.

The camera matrices Ai are only defined up to scale, and the trifocal variety is birational to

the GIT quotient Ĝr(4, 9)//(C∗)3.
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Multiview Geometry to Trifocal Tensors
Set n = 3 cameras, with matrices A1,A2,A3.
The maximal minors of the 4× 9 matrix (At

1 | At
2 | At

3) give coordinates of a point on the
Grassmannian Gr(4, 9) ⊂ P(

∧4C9).

Let A∗,B∗,C ∗ ∼= C3 be the column spaces of At
1,A

t
2,A

t
3 respectively.

Have a G := SL(A)× SL(B)× SL(C )-invariant subspace∧4C9 =
∧4(A∗ ⊕ B∗ ⊕ C ∗) ⊃ A∗ ⊗ B∗ ⊗

∧2C ∗ ∼= A∗ ⊗ B∗ ⊗ C

–the maximal minors that use 1 column from each of the first two blocks and 2 from the third.

The G -equivariant projection Gr(4, 9) 99K P(A∗ ⊗ B∗ ⊗ C ) defines the trifocal tensors
(automatically G -invariant).

The fibers of the projection are scaling in each block matrix, so the image X (the trifocal
variety) is an 18-dimensional G -variety in P(A∗ ⊗ B∗ ⊗ C ).
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General multi-focal tensors
Stack camera matrices Ai : CN → Cn to form the N ×m · n matrix

M =
(
A>1 A>2 . . . A>m

)
.

M has maximal rank on an open set of camera configurations.

Fix a partition π ` N, with #π ≤ m parts, N ≤ m · n, and π1 ≤ n:
Zπ is the variety of the maximal minors of M using πi columns from A>i .

Zπ is an equivariant projection from the Grassmannian Gr(N,mn).

Zπ is invariant under the action of GL(n)×#π.
I see also [Hartley-Zisserman], [Aholt-Sturmfels-Thomas], [Heyden], [Triggs],

[Faugeras-Mourrain]...

We are most interested in the case N = 4, m = 4 n = 3:
Z2,2 is the variety of fundamental matrices (skew-symmetric 3× 3 matrices).
Z2,1,1 is the variety of trifocal tensors (special 3× 3× 3 tensors). (see [Aholt-O.’14]).
Z1,1,1,1 is the variety of quadrifocal tensors (special 3× 3× 3× 3 tensors).
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Main Theorem

Theorem (Aholt–O. (2014))

Let X denote the trifocal variety. The prime ideal I (X ) is minimally generated by 10
polynomials in degree 3, 81 polynomials in degree 5, and 1980 polynomials in degree 6.

The polynomials have small integer coefficients (| · | < 5) and up to 732 monomials each.

These are the lowest degree generators of the ideal of the trifocal variety.

Improves [Alzati–Tortora’10]’s set-theoretic equations (and lowers degrees).

Gives a test to determine whether T ∈ A∗ ⊗ B∗ ⊗ C is a trifocal tensor.
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Proof ingredients

In general, implicitization – finding the ideal in 27 variables of an 18-dimensional variety – is
difficult. Brute force is unlikely to work.

Here’s an outline of how we attacked the problem:

Representation theory of G -modules of polynomials

Numerical Algebraic Geometry

Invariant Theory & Classification of Normal Forms

Commutative Algebra
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Find polynomials by any means necessary

Naively compute the Hilbert function for I (X ) ⊂ R = C[x1, . . . , x27] for as high a degree as
possible:

using Representation Theory:

HFR=(1, 27, 378, 3654, 27405, 169911, 906192, 4272048, 18156204, 70607460, . . .

HFR/I=(1, 27, 378, 3644, 27135,

166050, 865860, 3942162, 15966072, 58409126, ?

dimI=(0, 0, 0, 10, 270,

3861, 40332, 329886, 2190132, 12198334, ?

Set N = dimRd . Make an N × N matrix of N monomials of degree d evaluated at N
random points of X . Compute its kernel.

Use Representation Theory of tensor products of Schur modules to aid computations:
I G -structure reduces the computation to computing kernels of several smaller blocks.
I We also get a G -module description of the lowest degree parts of I (X ) and C[X ].
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Representation theory results

We applied machinery introduced by Landsberg and Manivel to perform our representation
theoretic computations.

Starting in degree 3, we computed the highest weight spaces of G -modules of polynomials
spanning the ideal I (X ) in each degree up to 9.

Using Macaulay21, we found the minimal generators in those degrees.

HFR=(1, 27, 378, 3654, 27405, 169911, 906192, 4272048, 18156204, 70607460, . . .

HFR/I=(1, 27, 378, 3644, 27135, 166050, 865860, 3942162, 15966072, 58409126, ?

dimI=(0, 0, 0, 10, 270, 3861, 40332, 329886, 2190132, 12198334, ?

mingens I=(0, 0, 0, 10, 0, 81, 1980, 0, 0, 0, ?

1Grayson-Stillman
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Main Theorem (Invariant description)

Let X ⊂ P(A∗ ⊗ B∗ ⊗ C ) be the trifocal variety, G = SL(A)× SL(B)× SL(C ).
Given partitions λ, µ, ν of d , let SλSµSν denote the G -module SλA⊗ SµB ⊗ SνC

∗ of
polynomials in Sd(A⊗ B ⊗ C ∗).

Theorem (Aholt–O.)

The ideal of X is generated by the following G -modules.
M3 =

∧3∧3S3, 10 cubics,
M5 = S221S221S311 ⊕ S221S221S221, 81 quintics,
M6 = S222S33S33 ⊕ S33S222S33 ⊕ S222S33S411 ⊕ S33S222S411

⊕S33S411S222 ⊕ S411S33S222 ⊕ S33S33S222

⊕S33S321S321 ⊕ S321S33S321, and 1980 sextics.
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Normal form of a trifocal tensor (main orbit)
A (rank 4) tensor in A∗ ⊗ B∗ ⊗ C :

T = a1 ⊗ b2 ⊗ c1 + a3 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3.
3 contractions:

T (A)=

a3 0 0
a1 a2 0
0 0 a3

 ,

P-RankA = 3

T (B)=

b2 0 0
0 b2 0
b1 0 b3

 ,

P-RankB = 3

T (C )=

 0 c1 0
0 c2 0
c1 0 c3


P-RankC = 2

3 flattenings to 3× 9 matries:
bc
a1

a2

a3

∣∣∣∣∣∣
11 12 13
0 0 0
0 0 0
1 0 0

∣∣∣∣∣∣
21 22 23
1 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
31 32 33
0 0 0
0 0 0
0 0 1

 ,

F-RankA = 3
ac
b1

b2

b3

∣∣∣∣∣∣
11 12 13
0 0 0
1 0 0
0 0 0

∣∣∣∣∣∣
21 22 23
0 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
31 32 33
1 0 0
0 0 0
0 0 1

 ,

F-RankB = 3
ab
c1

c2

c3

∣∣∣∣∣∣
11 12 13
0 1 0
0 0 0
0 0 0

∣∣∣∣∣∣
21 22 23
0 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
31 32 33
1 0 0
0 0 0
0 0 1

 ,

F-RankC = 3
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Evgeniy Martyushev’s Normal form (“F” on Nurmiev’s list)
A (rank 4) tensor in A∗ ⊗ B∗ ⊗ C :
E = a1 ⊗ (b2 + b3)⊗ c1 + (−a2 − a3)⊗ b1 ⊗ c1 + a2 ⊗ (b3 − b1)⊗ c2 + (a1 − a3)⊗ b2 ⊗ c2

3 contractions:

E (A)

−a2 − a3 −a2 0
a1 a1 − a3 0
a1 a2 0


P-RankA = 2

E (B)

b2 + b3 b2 0
−b1 −b1 + b3 0
−b1 −b2 0


P-RankB = 2

E (C )

 0 c1 + c2 c1

−c1 − c2 0 c2

−c1 −c2 0


P-RankC = 2

3 flattenings to 3× 9 matries:
bc
a1

a2

a3

∣∣∣∣∣∣
11 12 13
0 0 0
−1 −1 0
−1 0 0

∣∣∣∣∣∣
21 22 23
1 1 0
0 0 0
0 −1 0

∣∣∣∣∣∣
31 32 33
1 0 0
0 1 0
0 0 0

 ,

F-RankA = 3
ac
b1

b2

b3

∣∣∣∣∣∣
11 12 13
0 0 0
1 1 0
1 0 0

∣∣∣∣∣∣
21 22 23
−1 −1 0
0 0 0
0 1 0

∣∣∣∣∣∣
31 32 33
−1 0 0
0 −1 0
0 0 0

 ,

F-RankB = 3
ab
c1

c2

c3

∣∣∣∣∣∣
11 12 13
0 1 1
0 1 0
0 0 0

∣∣∣∣∣∣
21 22 23
−1 0 0
−1 0 1
0 0 0

∣∣∣∣∣∣
31 32 33
−1 0 0
0 −1 0
0 0 0

 ,

F-RankC = 2
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Normal form “9”
A (rank 3) tensor in A∗ ⊗ B∗ ⊗ C :
S = a1 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c2 + a2 ⊗ b2 ⊗ c2 + a2 ⊗ b3 ⊗ c3

3 contractions:

S(A) =

a1 0 0
0 a1 + a2 0
0 0 a2


P-RankA = 3

S(B) =

b1 b2 0
0 b2 b3

0 0 0


P-RankB = 2

S(C ) =

c1 c2 0
0 c2 c3

0 0 0


P-RankC = 2

3 flattenings to 3× 9 matries:
bc
a1

a2

a3

∣∣∣∣∣∣
11 12 13
1 0 0
0 0 0
0 0 0

∣∣∣∣∣∣
21 22 23
0 1 0
0 1 0
0 0 0

∣∣∣∣∣∣
31 32 33
0 0 0
0 0 1
0 0 0

 ,

F-RankA = 2
ac
b1

b2

b3

∣∣∣∣∣∣
11 12 13
1 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
21 22 23
0 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
31 32 33
0 0 0
0 0 0
0 0 0

 ,

F-RankB = 3
ab
c1

c2

c3

∣∣∣∣∣∣
11 12 13
1 0 0
0 1 0
0 0 0

∣∣∣∣∣∣
21 22 23
0 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
31 32 33
0 0 0
0 0 0
0 0 0

 ,

F-RankC = 3
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Polarization: how to write down 10 special cubics
Think of a 3× 3× 3 tensor as three 3× 3 blocks of a matrix T = (T1 |T2 |T3)

=

T000 T100 T200
T010 T110 T210
T020 T120 T220

∣∣∣∣ T001 T101 T201
T011 T111 T211
T021 T121 T221

∣∣∣∣ T002 T102 T202
T012 T112 T212
T022 T122 T222


Use dummy variables z1, z2, z3 to form the generic contraction:

T (z) = z1T1 + z2T2 + z3T3.T000z0 + T001z1 + T002z2 T100z0 + T101z1 + T102z2 T200z0 + T201z1 + T202z2
T010z0 + T011z1 + T012z2 T110z0 + T111z1 + T112z2 T210z0 + T211z1 + T212z2
T020z0 + T021z1 + T022z2 T120z0 + T121z1 + T122z2 T220z0 + T221z1 + T222z2


If T is a trifocal tensor then T (z) is a bifocal tensor for all z .

Recall F is a bifocal tensor if and only if it has rank 2.

Therefore det(T (z)) ≡ 0. The coefficients in z are 10 cubic equations in the entries of T .

Gives a basis of the Schur Module (S3V1⊗
∧3V2⊗

∧3V3)∗.
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Bertini and the degree

Bertini2 is a system for Numerical Algebraic Geometry. Computes a numerical primary
decomposition, ignoring embedded components and multiplicities.
6.5hours (2 processors) or 10minutes (48 processors – Jon’s cluster):

Computation (Hauenstein/Bertini)

Let M3 denote the 10 coefficients (in x1, x2, x3) of the cubic det(x1T1 + x2T2 + x3T3). The
zero set of M3 has precisely 4 components:
In codimension 7 there are 2 components, each of degree 36.
In codimension 8 there is 1 component of degree 297.
In codimension 10 there is 1 component of degree 1035.

Components are F-Rank-(2, 3, 3), F-Rank-(3, 2, 3), Trifocal, P-Rank-(2, 2, 2).

Corroborates result using Nurmiev’s poset (next).
We also learn the degree of each integral variety!

2[Bates, Hauenstein, Sommese, Wampler]
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Orbit classification and normal forms

SL(3)×3 acts on C3 ⊗ C3 ⊗ C3 with infinitely
many orbits, but they are classified1.

Get normal forms for every orbit.
Easy to check which orbits are in the
zero-locus of a set of polynomials.

The zero-locus of the polynomials coming from
P-Rank-(3, 3, 2) consist of the following orbits
with poset structure (Nurmiev)

4 sources in the poset means that
P-Rank-(3, 3, 2) is the union of 4 orbit closures
(irreducible varieties).
[1Thrall-Chanler’38, Ng ’95, Vinberg-Èlašvili’78, Nurmiev’00]

Nurmiev Poset:
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23 23'23''

24
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Determine whether a given tensor is trifocal

Separate orbits:
I The conditions P-Rank-(3, 3, 2) and F-Rank-(3, 3, 3) (vanishing and non-vanishing) separate

the trifocal orbit from the other orbits.

Up to generic choices (generically complete set of equations):
I [AT’10] showed 3 cubic, 3 quintic and 2 sextic equations, and 2 degree 4 inequalities define a

Zariski open subset of trifocal tensors.

Set-theoretic defining equations
I [AT’10] used 10 degree 3, 20 degree 9, 6 degree 12 equations.
I Add in more polynomials to eliminate other geometric components from P-Rank-(3, 3, 2).

Ideal-theoretic defining equations
I Add in more polynomials to eliminate other embedded components from the ideal.
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Notions of degree [see Sturmfels-Trung-Vogel’95]

Bertini finds 297 simple points in a random codimension-sized linear space intersecting
the trifocal variety, so the degree of the trifocal variety is 297 (...up to numerical precision

and our trust in Bertini).

A Gröbner basis computation in Macaulay2 shows that J = 〈M3 + M5 + M6〉, (the
10+81+1980 polynomials) has degree 297 [the leading coefficient of the Hilbert
polynomial and the degree of the top dimensional component].

Conclude that the top dimensional component of J agrees with the trifocal variety X , and
the multiplicity of I (X ) is 1 in J.

The set-theoretic result implies that the geometric degree of J (sum of degrees of all
isolate components) is 297.

What about possible embedded components? i.e. can we show that the arithmetic degree
(sum of degrees of all embedded and isolated components) of J is 297?
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Zero divisors and Hilbert series
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Zero divisors and Hilbert series

The trifocal variety corresponds to the closure
of orbit 11” from Nurmiev. The first orbits in
the closure are 14, 15, 15’.

G is connected. So the associated primes in a
primary decomposition are G -invariant.

Possible minimal primary decomposition of J:

J = I (X ) ∩ Q14 ∩ Q15 ∩ Q15′ ,

with primary ideals Qi and assoc. primes Pi .

The orbit closure poset is also a poset of
G -stable primes.

9

12

9'

12'11''

15 15'14

13 13'

16 16'

F

17'17 17'' 18'1818''

1919''

22 22'

19'

20

21

23 23'23''

24

We want to show that the primary components
Q14,Q15, and Q15′ do not occur.
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Zero divisors and Hilbert series4

Basic fact3: The set of zero divisors of R/J is the union of prime ideals that contain J.
Suppose J = I (X ) ∩ Q14 ∩ Q15 ∩ Q15′ , ass(Qi ) = Pi .
Suppose f ∈ Pi has degree d . If f is not a zero-divisor of R/J, the following sequence is exact

0−→(R/J)(−d)
f−→R/J−→R/(J + f )−→0.

Since H(R/J)(−d)(t) = tdH(R/J)(t), by the additivity of Hilbert series,

(1− td)HR/J(t) = HR/(J+f )(t). (1)

If f is a zero-divisor, (??) fails for some t.
Else f is not a zero-divisor and J 6⊂ Pi .

3Atiyah-MacDonald Prop. 4.7
4Thanks to Steven Sam for suggesting we try this computation.
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Zero divisors and Hilbert series

We selected f in P14, (resp. P15, P15′), and computed a Gröbner basis and the Hilbert
series of J + f in 10 hours (resp. 45hrs) on a server with 8 processors and 16 GB of RAM.

For each f we confirmed the validity of

(1− td)HR/J(t) = HR/(J+f )(t).

So, P14, P15, P15′ are not imbedded in J.

Therefore J is prime and agrees with I (X ).
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Summary

The trifocal variety and its ideal have been studied using the following tools

Symmetry of the variety and the Representation Theory of its ideal
– found all polynomials in low degree (up to 9)

Numerical Algebraic Geometry (Bertini) – computing numerical primary decomposition of
the first polynomials we encountered
– found the degree of the trifocal variety

Classification of orbits - a list of all possible G -varieties and minimal G -stable prime ideals

Symbolic (Gröbner basis) computations – degree, Hilbert Series...

Commutative algebra – ruling out possible embedded components of the known ideal

THANKS!
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We would like to give a complete algebraic description of the quadrifocal variety Z by finding
the generators of its defining ideal I (Z ) (the implicit defining equations of the model).

Naively, to find out if the variety Z lives in a linear subspace, put the coordinates of 81 points

in the rows of a matrix P =

 Z1
...

Z81

 The null space of P is the vector space of linear

forms vanishing on the 81 points (and very likely all of Z ).

If Null(P) = 0, there are no linear forms in the ideal of Z .

In higher degree d we can Veronese re-embed the points and solve another linear algebra
problem to find the space of degree d polynomials vanishing on Z .

But the dimensions grow quickly:(
1 81 3321 91881 1929501 32801517 470155077 5843355957 64276915527 . . .

)
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The ideal I (Z ) is a G = S4 n GL(3)×4-submodule of R = C[C3 ⊗ C3 ⊗ C3 ⊗ C3].
R has a G -isotypic decomposition:

R =
⊕
d≥0

⊕
π`4d

SπV⊗Mπ.

where π is a multi-partition, the sum is over non-redundant permutations,

Schur module: SπV =
⊕

σ∈S4/∼(Sπσ.1V1⊗Sπσ.2V2⊗Sπσ.3V3⊗Sπσ.4V4)

Multiplicity space (Specht Module): Mπ.

Our tasks for small degree d are the following:

Compute a basis of Mπ for each π.

Evaluate the highest-weight space of SπV⊗Mπ on points of Z .

Obtain a list of G -modules (with multiplicity) in I (Z ).

Determine which modules are among the minimal generators.

Determine the maximal degree of minimal generators.
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Invariant Theory and Young Symmetrizers

Multi-partition: (221, 221, 221,221), Filling: F =

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c

Auxiliary polynomial:

p =

∣∣∣∣∣ a
1
1 a1

2 a1
3

b1
1 b1

2 b1
3

c1
1 c1

2 c1
3

∣∣∣∣∣ ∣∣∣ d1
1 d1

2

e1
1 e1

2

∣∣∣ · ∣∣∣∣∣ a
2
1 a2

2 a2
3

b2
1 b2

2 b2
3

c2
1 c2

2 c2
3

∣∣∣∣∣ ∣∣∣ d2
1 d2

2

e2
1 e2

2

∣∣∣ · ∣∣∣∣∣ a
3
1 a3

2 a3
3

b3
1 b3

2 b3
3

c3
1 c3

2 c3
3

∣∣∣∣∣ ∣∣∣ d3
1 d3

2

e3
1 e3

2

∣∣∣ · ∣∣∣∣∣ a
4
1 a4

2 a4
3

b4
1 b4

2 b4
3

c4
1 c4

2 c4
3

∣∣∣∣∣ ∣∣∣ d4
1 d4

2

e4
1 e4

2

∣∣∣
1 Start with p(a, b, c , d , e, x) of multi-degree (4, 4, 4, 4, 4, 0).
2 Replace every a1

i a
2
j a

3
ka

4
l with xi ,j ,k,l

I Produce a polynomial of multi-degree (0, 4, 4, 4, 4, 1).

3 Replace every b1
i b

2
j b

3
kb

4
l with xi ,j ,k,l

I Produce a polynomial of multi-degree (0, 0, 4, 4, 4, 2).

4 Repeat for c , d , e,
I Produce P(x) of multi-degree (0, 0, 0, 0, 0, 5) (possibly zero).

5 output: P(x) highest weight vector of S221C3⊗S221C3⊗S221C3⊗S221.
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Evaluation of Young Symmetrizers

Multi-partition: (221, 221, 221,221), Filling: F =

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c

Auxiliary polynomial:

p =

∣∣∣∣∣ a
1
1 a1

2 a1
3

b1
1 b1

2 b1
3

c1
1 c1

2 c1
3

∣∣∣∣∣ ∣∣∣ d1
1 d1

2

e1
1 e1

2

∣∣∣ · ∣∣∣∣∣ a
2
1 a2

2 a2
3

b2
1 b2

2 b2
3

c2
1 c2

2 c2
3

∣∣∣∣∣ ∣∣∣ d2
1 d2

2

e2
1 e2

2

∣∣∣ · ∣∣∣∣∣ a
3
1 a3

2 a3
3

b3
1 b3

2 b3
3

c3
1 c3

2 c3
3

∣∣∣∣∣ ∣∣∣ d3
1 d3

2

e3
1 e3

2

∣∣∣ · ∣∣∣∣∣ a
4
1 a4

2 a4
3

b4
1 b4

2 b4
3

c4
1 c4

2 c4
3

∣∣∣∣∣ ∣∣∣ d4
1 d4

2

e4
1 e4

2

∣∣∣
Point: Z ∈ C3⊗C3⊗C3⊗C3

1 Start with p(a, b, c , d , e, x) of multi-degree (4, 4, 4, 4, 4, 0).
2 Replace every a1

i a
2
j a

3
ka

4
l with xi ,j ,k,l and substitute xi ,j ,k,l → Zi ,j ,k,l .

I Produce a polynomial of multi-degree (0, 4, 4, 4, 4, 0).
3 Replace every b1

i b
2
j b

3
kb

4
l with xi ,j ,k,l and substitute xi ,j ,k,l → Zi ,j ,k,l .

I Produce a polynomial of multi-degree (0, 0, 4, 4, 4, 0).
4 Repeat for c , d , e,
5 output: the value of p(Z ).

I Producing p(Z ) takes much less time and memory than p(x).
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Compute a basis of Mπ for each π.
The following fillings form a basis of M(221),(221),(221),(221):

F1 =

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c ⊗

a d
b e
c , F2 =

a d
b e
c ⊗

a d
b e
c ⊗

a c
b e
d ⊗

a c
b e
d

F3 =

a d
b e
c ⊗

a d
b e
c ⊗

a c
b e
d ⊗

a c
b d
e , F4 =

a d
b e
c ⊗

a c
b e
d ⊗

a d
b e
c ⊗

a c
b e
d

F5 =

a d
b e
c ⊗

a c
b e
d ⊗

a d
b e
c ⊗

a c
b d
e , F6 =

a d
b e
c ⊗

a c
b e
d ⊗

a c
b e
d ⊗

a d
b e
c

Check rank(pi (Zj)) for 6 random points Zj , ⇒ independence.
A character computation ⇒ spanning.
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Evaluate the highest-weight space of SπV⊗Mπ on Z .

Using the basis of M(221),(221),(221),(221) and Young symmetrizers,
populate the matrix (one processor core per entry)

(pi (Zj))

for 6 random points Zj of Z .

Find null-space (kernel) is the span of(
−11/12 1 0 1 0 1

)T
So (S221C3⊗S221C3⊗S221C3⊗S221C3) has multiplicity 1 in I (Z ).
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Quadrifocal Hilbert Function
Compute the Hilbert function for I (Z ) ⊂ R = C[x1, . . . , x81] for as high a degree as possible.

Using Representation Theory and parallel computing we found:

d = 0 1 2 3 4 5 6 7 8
HFR = (1 81 3321 91881 1929501 32801517 470155077 5843355957 64276915527 . . .
dimI = (0 0 0 600 48600 1993977 54890407 1140730128 18051062139
mingens = (0 0 0 600 0 ≥ 1377 37586 ?0 ?162000

-- deg # reps max_mult

------------------------------

-- 1 | 1 1 }

-- 2 | 3 1 } Use Symmetry

-- 3 | 9 3 }

-- 4 | 25 4 } Use Grid Computing

-- 5 | 59 13 }

-- 6 | 163 93 } Use Multi-threading

-- 7 | 288 301 }

-- 8 | 619 608 } Use a High Performance Cluster

-- 9 | 1205 2226 } (deg 9 seems slightly out of reach)Oeding (Auburn) Trifocal ideal November 27, 2017 34 / 27



Obtain a list of G -modules (with multiplicity) in I (Z ).

Repeat the process for isotypic decompositions of C[(C3)⊗4]d .

Obtain multiplicities of all modules in I (Z )d for small degree d .
For instance, I (Z )d = 0 for d = 1, 2

Input the results into SchurRings (by Stillman and Raicu) in Macaualy2.

Modules are represented as polynomials, with coefficients the multiplicities.
For example I (Z )3 is expressed as

(s(1,1,1)t(1,1,1)u3 + (s(1,1,1)t3 + s3t(1,1,1))u(1,1,1))v3

+((s(1,1,1)t3 + s3t(1,1,1))u3 + s3t3u(1,1,1))v(1,1,1)

or modding out by the S4 action, I (Z )3 = s3t3u(1,1,1)v(1,1,1)

which represents the module S4.(S3C3⊗S3C3⊗S1,1,1C3⊗S1,1,1C3).
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Determine which modules are minimal generators.
Let R = C[(C3)⊗4]. Using the Young symmetrizer algorithm,
I (Z )4 = (s4t4 + (s4 + s(3,1))t(3,1))u(2,1,1)v(2,1,1)

Using SchurRings, we find that
I (Z )3 · R1 = I (Z )4.
(all multiplicities are one, and every module in I (Z )4 occurs in I (Z )3 · R1)
So there are no minimal generators in degree 4.

We find two modules in I (Z )5 that cannot occur in I (Z )3 · R2:
s(3,1,1)t(3,1,1)u(3,1,1)v(3,1,1) + s(2,2,1)t(2,2,1)u(2,2,1)v(2,2,1)

We find the following modules occur in I (Z )6 but cannot occur in I (Z )5 · R1:
(s6t(3,3)u(3,3) + ((2s(4,1,1) + 2s(3,3))t(3,3) + s(3,2,1)t(3,2,1) + 2s(2,2,2)t(2,2,2))u(2,2,2))v(2,2,2)

We find that all modules in I (Z )7 can occur in I (Z )6 · R1,
strong evidence that there are no minimal generators in degree 7.
In degree 8 we find a surprise: S4,4S4,4S4,4S4,2,2 ⊗ C2 must occur among the minimal
generators.
In degree 9 we weren’t able to compute all modules because of a lack of computing time, but
the modules we were able to compute produced no new necessary minimal generators.Oeding (Auburn) Trifocal ideal November 27, 2017 36 / 27



graded
piece

dim Id
necessary G modules
of minimal generators

dimension
of mingens

I2 0 M2 = 0 0
I3 600 M3 = S3S3S1,1,1S1,1,1 600
I4 48,600 M4 = 0 0
I5 1,993,977 M5 = S3,1,1S3,1,1S3,1,1S3,1,1

⊕S2,2,1S2,2,1S2,2,1S2,2,1

1,377

I6 54,890,407 M6 = S4,1,1S3,3S2,2,2S2,2,2⊗C2

⊕S3,3S3,3S2,2,2S2,2,2⊗C2

⊕S3,2,1S3,2,1S2,2,2S2,2,2

⊕S2,2,2S2,2,2S2,2,2S2,2,2⊗C2

⊕S6S3,3S3,3S2,2,2

37,586

I7 1,140,730,128 M7 = 0 0
I8 18,051,062,139 M8 = S4,4S4,4S4,4S4,2,2 ⊗ C2 162,000
I9 ≥ 188,850,321,637 M9 ≥ S5,4S5,4S5,4S4,3,2

⊕S5,4S5,4S5,4S5,2,2

3,087,000

Table: The ideal of the quadrifocal variety up to degree 9. We used M2 to rule out many possible
minimal generators and conjecture that these equations suffice to define the quadrifocal variety.
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