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Recall Peter Burgisser’s overview lecture (Jan Draisma’s SIAM News article).

Big Goal: Bound the computational complexity of detn, permn, Mn.

Algorithmic Complexity is often governed by the rank of a tensor.

Need: tools for bounding the rank (or border rank) of tensors.

How can we find such lower bounds? Polynomials!

Common theme: Exploit all available symmetry to aid in computations.

Take the n× n matrix multiplication tensor Mn ∈ Cn2 ⊗ Cn2 ⊗ Cn2

.
In 2013 Ikenmeyer, Hauenstein and Landsberg provided a new computational proof that the border
rank of 2× 2 matrix multiplication M2 is 7 by providing a degree 20 invariant F for border rank 7
that did not vanish on M2.
Driasma highlighted the dramatic power of symmetry:

Straightforward combinatorics shows that the space of degree-20 polynomials on the
64-dimensional space is C(63 + 20, 20) = 8, 179, 808, 679, 272, 664, 720-dimensional —
it is striking how representation theory helps us to find F and evaluate it at M2!

Our work echoes this theme.
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First questions for tensors

Consider tensors of format n1 × · · · × nd.
1 What notion of rank are you using?

(tensor rank / border rank via secant varieties)

2 What is the expected (generic) tensor rank? (defectivity)

3 How can you find a minimal decomposition of a given tensor?
(Find effective algorithms)

4 How can you detect the rank of a given tensor? (Provide certificates)

5 How many decompositions does a given tensor have? (identifiability)

Knowing equations of secant varieties can help with all of these questions, especially if they’re
determinantal.
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Secant varieties and tensors
Let V1, . . . , Vd, be C-vector spaces. The tensor product V1⊗ · · ·⊗Vd is the vector space with
elements (Ti1,...,id) considered as hyper-matrices or tensors.

Segre variety (rank 1 tensors): Defined by

Seg : PV1 × · · · × PVd −→ P
(
V1 ⊗ · · · ⊗ Vd

)
([v1], . . . , [vd]) 7−→ [v1⊗ · · ·⊗vd].

In coordinates: Ti1,...,id = v1,i1 · v2,i2 · · · vd,id .

The rth secant variety of a variety X ⊂ PN :

σr(X) :=
⋃

x1,...,xr∈X
P(span{x1, . . . , xr}) ⊂ PN .

General points of σr(Seg(PV1 × · · · × PVd)) have rank r:[
r∑
s=1

vs1⊗vs2⊗ . . .⊗vsd

]
,

or in coordinates: Ti1,...,in =
∑r
s=1 v

s
1,i1
· vs2,i2 · · · v

s
d,id

.
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A first case: matrices

Suppose k ≤ m ≤ n. If M ∈Matm×n(C) has rank k then ∃ (full rank) A ∈Matm×k(C) and ∃
(full rank) B ∈Matk×n(C) such that

M = AB but also M = (AU)(U−1B),

for any (full rank) U ∈Matk×k(C).

So dim(σk(Pm−1 × Pn−1)) has dimension m · k + n · k − k2 − 1.

Expected dimension: ExpDim(σk(Pm−1 × Pn−1)) = min{n ·m− 1, k · (n+m− 1)− 1}.

So the defect is k · (n+m− 1)− 1− (m · k + n · k − k2 − 1) = k2 − k.

Rank k matrices are defective (and thus not identifiable) for k 6= 0, 1.
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First examples of equations of secant varieties: Flattenings

Given T ∈ V1⊗ · · ·⊗Vd, take index sets I t J = [d].
Tensor product is associative, so V1⊗ · · ·⊗Vd = (

⊗
i∈I Vi)⊗(

⊗
j∈J Vj),

And we can view T as a (flattening) matrix:

FI(T ) : V ∗I → VJ

Facts:

If Rank(T ) = 1, then rank FI(T ) = 1.

F (T + T ′) = F (T ) + F (T ′).
Sub-additivity of matrix rank implies if Rank T = r then RankF ((T )) ≤ r.
So, (r + 1)× (r + 1) minors of flattenings (if non-trivial) are equations for tensors of rank ≤ r.
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2× 2× 2× 2 tensors
Suppose Vi = C2 for 1 ≤ i ≤ 4.
Four different 1-flattenings (up to transpose):

F1(T ) : V ∗1 → V2⊗V3⊗V4

F2(T ) : V ∗2 → V1⊗V3⊗V4

F3(T ) : V ∗3 → V1⊗V2⊗V4

F4(T ) : V ∗4 → V1⊗V2⊗V3

All 8× 2 matrices, max rank 2. If all have rank 1, then the tensor T actually has rank 1 (and vice
versa).
Three different 2-flattenings (up to transpose)

F1,2(T ) : (V1⊗V2)∗ → V3⊗V4

F1,3(T ) : (V1⊗V3)∗ → V2⊗V3

F1,4(T ) : (V1⊗V4)∗ → V2⊗V3

All 4× 4. So determinants vanish for tensors of rank 3.
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A defective secant variety
Suppose Vi = C2 for 1 ≤ i ≤ 4. Counting parameters, expect σ3(PV1 × PV2 × PV3 × PV4) to be
3 · (1 + 1 + 1 + 1) + 2 = 14, so expect codimension 1 in P15 = P(V1⊗V2⊗V3⊗V4).
On the other hand,

F1,2(T ) : (V1⊗V2)∗ → V3⊗V4

F1,3(T ) : (V1⊗V3)∗ → V2⊗V3

F1,4(T ) : (V1⊗V4)∗ → V2⊗V3

Check: any two of det(F1,2(T )), det(F1,3(T )), det(F1,4(T )) are algebraically independent, so

dim zeros(det(F1,2(T )),det(F1,3(T ))) = 13

In fact, σ3(PV1 × PV2 × PV3 × PV4) = zeros(det(F1,2(T )),det(F1,3(T )))
The expected dimension is not the actual dimension, so the variety is defective, and thus rank 3
tensors of format 2× 2× 2× 2 are not identifiable.

Theorem (Catalisano-Geramita-Gimigliano)

Suppose Vi ∼= C2 for 1 ≤ i ≤ d. For all d ≥ 5 and all k, σk(PV1 × · · · × Vd) has the expected
dimension (non-defective).
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Identifiability for Binary Tensors
dimσ3(PV1 × PV2 × PV3 × PV4) = 13 < 14 also implies that the generic tensor of rank 3 and format
2× 2× 2× 2 has infinitely many decompositions.

Definition
If the general tensor of format n1 × · · · × nd and rank k has finitely many decompositions the
variety is not k-defective.

Definition
A tensor format n1 × n2 × . . . nd is called k-identifiable if the generic tensor of that format and
rank k has a unique (up to trivial re-ordering) decomposition as the sum of k rank-1 tensors.

Theorem (Bocci-Chiantini 2014)

2× 2× 2× 2× 2 tensors are not identifiable in rank 5, but the generic tensor of that format has
exactly 2 decompositions.

Theorem (Bocci-Chiantini-Ottaviani 2014)

For ≥ 6 factors, the Segre is almost always k-identifiable.
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Identifiability for Perfect Tensors

A tensor of format n1 × · · · × nd is of perfect format if [
∏
i=1 ni]/[1 +

∑
i(ni + 1)] is an integer

(generically have finitely many decompositions).

Theorem (Hauenstein-Oeding-Ottaviani-Sommese ’14)

The general 3× 4× 5 tensor has a unique decomposition of rank 6.

The general 2× 2× 2× 3 tensor has a unique decomposition of rank 4.

Conjecture (Hauenstein-Oeding-Ottaviani-Sommese ’14)

The only perfect formats (n1, . . . , nd) where a general tensor has a unique decomposition are:

1 (2, k, k) for some k — matrix pencils, classical Kronecker normal form,

2 (3, 4, 5), and

3 (2, 2, 2, 3).

(see arXiv:1501.00090)
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Out of Bernd Sturmfels’s Algebraic Fitness Session

Find the equations of σ5(Seg(P1 × P1 × P1 × P1 × P1)):

Theorem? (Oeding-Sam [Exp. Math 2015])

The affine cone of σ5(Seg(P1×5
)) is a complete intersection of two equations: one of degree 6, and

one of degree 16.

The star refers to the careful numerical, sometimes probablistic computations used in our proofs,
which took around two weeks of human/computer time.

Note this result implies that: σ5(Seg(P1×5
)) is arithmetically Cohen-Macaulay.
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Find equations in the ideal

Consider σ5(P1 × P1 × P1 × P1 × P1) ⊂ P31. Look for equations in R = C[x00000, . . . , x11111] of low
degree.
The Hilbert function of R starts like this:

d = 0 1 2 3 4 5 6 7 . . .
HFR(d) = 1 32 528 5984 52360 376992 2324784 12620256 . . .
HFR/I(d) = 1 32 528 5984 52360 376992 2324783 ? . . .
dim(Id) = 0 0 0 0 0 0 1 ? . . .

Naively, to find the space of sextics in the ideal: compute 2324784 points on the variety, evaluate
them on the 2324784 monomials of degree 6 and compute the kernel of the resulting
2324784× 2324784 matrix.

The space of degree 16 equations has dimension 511 738 760 544, so it seems hopeless to work here.
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The equation f6

Choose a basis e0, e1 for Vi so that we can identify the coordinates of P(V) with xI where
I ∈ {0, 1}5. Given a monomial in the xI , define its skew-symmetrization to be
c−1

∑
σ∈Σ5

sgn(σ)xσ(I) where c is the coefficient of xI in the sum. The polynomial f6 has 864
monomials and is the sum of the skew-symmetrizations of the following 15 monomials:

−x00000x01010x01101x10011x10100x11111, x00000x01100x01111x10010x10111x11001,

−x00000x01100x01111x10011x10110x11001, x00000x01101x01110x10011x10110x11001,

−x00110x01000x01101x10000x10011x11111, x00100x01010x01111x10000x10111x11001,

x00100x01000x01111x10011x10110x11001, x00110x01000x01101x10001x10010x11111,

−x00100x01010x01111x10001x10111x11000, x00100x01010x01111x10011x10101x11000,

−x00101x01010x01111x10000x10110x11001, x00100x01011x01110x10011x10101x11000,

−x00110x01001x01100x10001x10010x11111, x00110x01001x01111x10011x10100x11000,

x00111x01010x01101x10011x10100x11000.
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Alternative description in terms of Young symmetrizers, see [Bates-Oeding’10].
The Young Symmetrizer algorithm takes as input a set of fillings of five Young diagrams, performs
a series of skew-symmetrizations and symmetrizations, and produces as output a polynomial in the
associated Schur module.

There are 5 standard tableaux of shape (3, 3) and content {1, 2, . . . , 6}.

The following Schur module, which uses one of each of the 5 standard fillings, realizes the
non-trivial copy of

⊗5
i=1(S3,3Vi) inside of Sym6(V1⊗V2⊗V3⊗V4⊗V5)

S 1 3 5
2 4 6

V1 ⊗ S 1 3 4
2 5 6

V2 ⊗ S 1 2 5
3 4 6

V3 ⊗ S 1 2 4
3 5 6

V4 ⊗ S 1 2 3
4 5 6

V5.

Can show that the image of the Young symmetrizer vanishes on an open subset of points of X.
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From Ikenmeyer’s intro lecture: Polynomials and graphs
Each tableau gets a color. Each column becomes a directed colored arrow.
where color 1 corresponds to // , color 2 to // ,
color 3 to // , color 4 to ///o/o . color 5 to // ,
The degree 6 invariant is described by

S 1 3 5
2 4 6

V1 ⊗ S 1 3 4
2 5 6

V2 ⊗ S 1 2 5
3 4 6

V3 ⊗ S 1 2 4
3 5 6

V4 ⊗ S 1 2 3
4 5 6

V5.
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Combinatorics of these graphs played a strong role in the resolution of the
Garcia-Stillman-Sturmfels Conjecture on ideals of secant line varieties [Raicu’12], and the
resolution of the Landsberg-Weyman Conjecture on ideals of tangential varieties [Oeding-Raicu’13].
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The Young symmetrizer algorithm for evaluations
1 input:

I Point: Z ∈ C2⊗C2⊗C2⊗C2⊗C2,
I Multi-partition: ((3, 3), (3, 3), (3, 3), (3, 3), (3, 3))

I Filling: F =

a c e
b d f ⊗

a c d
b e f ⊗

a b e
c d f ⊗

a b d
c e f ⊗

a b c
d e f

2 Construct a product of determinants:

p =
∣∣∣ a11 a12
b11 b12

∣∣∣ ∣∣∣ c11 c12
d11 d

1
2

∣∣∣ ∣∣∣ e11 e12
f1
1 f1

2

∣∣∣∣∣∣ a21 a22
b21 b22

∣∣∣ ∣∣∣ c21 c22
e21 e

2
2

∣∣∣ ∣∣∣ d21 d22
f2
1 f2

2

∣∣∣∣∣∣ a31 a32
c31 c32

∣∣∣ ∣∣∣ b31 b32
d31 d

3
2

∣∣∣ ∣∣∣ e31 e32
f3
1 f3

2

∣∣∣
×
∣∣∣ a41 a42
c41 c42

∣∣∣ ∣∣∣ b41 b42
e41 e

4
2

∣∣∣ ∣∣∣ d41 d42
f4
1 f4

2

∣∣∣∣∣∣ a51 a52
d51 d

5
2

∣∣∣ ∣∣∣ b51 b52
e51 e

5
2

∣∣∣ ∣∣∣ c51 c52
f5
1 f5

2

∣∣∣ = 215 terms (don’t expand!).

3 Start with p(a, b, c, d, e, f, x) of multi-degree (5, 5, 5, 5, 5, 5, 0).
4 Substitutions: a1

i a
2
ja

3
ka

4
l a

5
ma

6
n → xi,j,k,l,m,n and xi,j,k,l,m,n → Zi,j,k,l,m,n.

I Produce a polynomial of multi-degree (0, 5, 5, 5, 5, 5, 0).

5 Substitutions: b1i b
2
jb

3
kb

4
l b

5
mb

6
n → xi,j,k,l,m,n and xi,j,k,l,m,n → Zi,j,k,l,m,n.

I Produce a polynomial of multi-degree (0, 0, 5, 5, 5, 5, 0).

6 Repeat for c, d, e, f
7 output: the value of p(Z).

I Producing p(Z) takes much less time and memory than p(x).
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Evaluate the highest-weight space of SπV⊗Mπ on X.
1 Use characters to compute m := dimM(d,d),(d,d),(d,d),(d,d),(d,d).
2 Make m random points yi of ambient space, and m+ 5 points xi of X.
3 Repeat the following for k = 1..m:

3.0 Start with linearly independent fillings F = {F1, . . . , Fk−1}.
3.1 At step k take a random filling Fk of shape (d, d)×5.
3.2 Evaluate pk(y1) using the Young symmetrizer algorithm for Fk.

F If pk(y1) is non-zero, continue.
F Otherwise return to (3.1).

3.3 Populate the k × k matrix (one processor core per entry)

Qk(y) := (pj(yi))(i,j)

3.4 Compute Rank(Qk(y)
F If Qk has rank k, add Fk to F increment k, and return to (3.0).
F Otherwise return to (3.1).

4 Take linearly independent fillings F = {F1, . . . , Fm}
5 Populate the (m+ 5)×m matrix (one processor core per entry)

Qm(x) := (pj(xi))i,j

6 The kernel of Qm(x) is the subspace of Mπ vanishing on the xi
7 The extra points increases likelihood that ker(Qm(x)) also vanishes on X.

Oeding (Auburn) 2 × 2 × 2 × 2 × 2 tensors of rank 5 December 15, 2015 17 / 24



From Jon Hauenstein’s Intro Lectures:
Numerical Algebraic Geometry & Bertini

input: An irreducible variety H.
Output: degH

1 Choose a random linear space L with dimL = codimH.

2 Generate a point x ∈ H ∩ L. Initialize W := {x}.
3 Perform a random monodromy loop starting at the points in W:

(a) Pick a random loop M(t) in the grassmannian of linear spaces so that M(0) =M(1) = L.
(b) Trace the curves H ∩M(t) starting at the points in W at t = 0 to compute the endpoints E

at t = 1. (Hence, E ⊂ H ∩ L).
(c) Update W :=W ∪ E .

4 Repeat (2) until #W stabilizes.

5 Use the trace test to verify that W = H ∩ L.

6 Return degH = #H(∩L).

Proposition?

The degree of σ5

(
(P1)×5

)
is 96.
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More Symmetry!

Let V := V1⊗V2⊗V3⊗V4⊗V5. Let Ud = Symd(V)SL×5
2 (the superscript denotes taking invariants).

This has an action of Σ5.
Here are the dimensions of Ud, and the spaces of Σ5-invariants and Σ5 skew-invariants in Ud.

Degree d dimUd dimUΣ5

d dimUΣ5,sgn
d

2 0 0 0
4 5 1 0
6 1 0 1
8 36 4 0
10 15 0 2
12 228 12 2
14 231 2 9
16 1313 39 10

This follows from standard character theory calculations.

Use linear algebra to compute bases of each space of invariants, and compute the subspaces of
invariants vanishing on rank 5 tensors.
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Invariant Invariants
How to compute with UΣ5

d and UΣ5,sgn
d :

Apply same Young symmetrizer method to detect non-zero fillings F .
Compute for y in ambient space,∑

σ∈Σ5

σ.pF (y) or
∑
σ∈Σ5

σ.pF (y) · sgn(σ)

by evaluating σ.pF (y) = pσ.F (y) on a different processor for each σ.
Then sum the results (with or without signs).
Repeat for new fillings and evaluating on y in ambient space until finding enough linearly
independent fillings.
Evaluate again on xj ∈ X and compute the kernel of the associated matrix

Q(x) =

(∑
σ∈Σ

pσFj
(xi)

)
.

Each evaluation took between 500 and 23,000 seconds and up to approximately 10GB of RAM on
our servers:
24 cores 2.8 GHz Intel Xeon processors, 144 GB RAM
40 cores 2.8 GHz Intel Xeon processors, 256GB of RAM
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Check invariants of degrees 8, 10, 12, 14, 16. In degree 16, dimU16 = 1313.
Compute evaluations in parallel, and then sum results with / without signs.

Try S5-skew-invariants, US5,sgn
16 :

I Find a basis of the 10-dimensional space US5,sgn
16 of skew invariants.

I Evaluate the basis on ≥ 10 random points of σ5

I Store results in a matrix and compute its rank

I discover US5,sgn
16 ∩ I(X) is full-dimensional, so no new equations.

Try S5-invariants, US5
16 :

I Find a basis of the 39-dimensional space US5
16 of invariants.

I Evaluate the basis on ≥ 10 random points of σ5

I Store results in a matrix and compute its rank

I discover US5
16 ∩ I(X) has dimension 36 (random). f6 · US5,sgn

10 is 2-dimensional, so there is ≥ 1
minimal generator of degree 16 in I(X).
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Theorem? (Oeding-Sam 2015)

The affine cone of σ5(Seg(P1×5
)) is a complete intersection of two equations: one of degree 6, and

one of degree 16.

Use Bertini (with Hauenstein’s help) to find deg σ5(Seg(P1×5
)) = 96

Known codim 2, so we suspect complete intersection of two polynomials.

Compute the only degree 6 invariant f6, and show that it vanishes on an open subset of X
(and thus on all of X).

Check invariants of degree 8,10,12,14, 16. In degree 16, discover one new generator, f16

vanishes on any number of random points of X.

Y = V (f6, f16), a complete intersection. Also X ⊆ Y and degX ≥ deg Y = 96. Since X is
irreducible of codimension 2, and Y is equidimensional, Y is also irreducible (otherwise the
degree inequality would be violated). So X is the reduced subscheme of Y .

Also, this implies that deg(X) = deg(Y ), so Y is generically reduced. Since Y is
Cohen–Macaulay, generically reduced is equivalent to reduced. Hence X = Y is a complete
intersection.
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Consequences of main result

Consider X̃ := σ5(PV1 × · · · × PV5) for any Vi. Let G =
∏5
i=1 GL(Vi).

Functoriality implies that the equations 〈G.f6〉 and 〈G.f16〉 vanish on X̃, and are the only

minimal generators of I(X̃) coming from modules where all partitions have at most 2 parts.
(Use Sam and Snowden’s ∆-module and twisted commutative algebra theory.)

These are new equations from secant varieties, which, as far as we know, don’t come from
flattenings.

A new example of a secant variety of a segre product that is a complete intersection and hence
arithmetically Cohen-Macaulay.
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The End
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