

Recall Peter Burgisser's overview lecture (Jan Draisma's SIAM News article).

- Big Goal: Bound the computational complexity of \det_n , perm_n , \mathcal{M}_n .
- Algorithmic Complexity is often governed by the rank of a tensor.
- Need: tools for bounding the rank (or border rank) of tensors.
- How can we find such lower bounds? Polynomials!
- Common theme: Exploit all available symmetry to aid in computations.

Take the $n \times n$ matrix multiplication tensor $\mathcal{M}_n \in \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2}$.

In 2013 Ikenmeyer, Hauenstein and Landsberg provided a new computational proof that the border rank of 2×2 matrix multiplication \mathcal{M}_2 is 7 by providing a degree 20 invariant F for border rank 7 that did not vanish on \mathcal{M}_2 .

Driasma highlighted the dramatic power of symmetry:

Straightforward combinatorics shows that the space of degree-20 polynomials on the 64-dimensional space is C(63 + 20, 20) = 8,179,808,679,272,664,720-dimensional —

it is striking how representation theory helps us to find F and evaluate it at \mathcal{M}_2 ! Our work echoes this theme.

First questions for tensors

Consider tensors of format $n_1 \times \cdots \times n_d$.

• What notion of rank are you using?

(tensor rank / border rank via secant varieties)

- What is the expected (generic) tensor rank? (defectivity)
- How can you find a minimal decomposition of a given tensor?

(Find *effective* algorithms)

- How can you detect the rank of a given tensor? (Provide certificates)
- How many decompositions does a given tensor have? (identifiability)

Knowing equations of secant varieties can help with all of these questions, especially if they're determinantal.

Secant varieties and tensors

Let V_1, \ldots, V_d , be \mathbb{C} -vector spaces. The tensor product $V_1 \otimes \cdots \otimes V_d$ is the vector space with elements (T_{i_1,\ldots,i_d}) considered as hyper-matrices or tensors.

• Segre variety (rank 1 tensors): Defined by

Seg:
$$\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_d \longrightarrow \mathbb{P}(V_1 \otimes \cdots \otimes V_d)$$

 $([v_1], \dots, [v_d]) \longmapsto [v_1 \otimes \cdots \otimes v_d].$

In coordinates: $T_{i_1,\dots,i_d} = v_{1,i_1} \cdot v_{2,i_2} \cdots v_{d,i_d}$.

• The r^{th} secant variety of a variety $X \subset \mathbb{P}^N$:

$$\sigma_r(X) := \bigcup_{x_1, \dots, x_r \in X} \mathbb{P}(\operatorname{span}\{x_1, \dots, x_r\}) \subset \mathbb{P}^N.$$

General points of $\sigma_r(\operatorname{Seg}(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_d))$ have rank r:

$$\left[\sum_{s=1}^r v_1^s \otimes v_2^s \otimes \ldots \otimes v_d^s\right],\,$$

or in coordinates: $T_{i_1,...,i_n} = \sum_{s=1}^r v_{1,i_1}^s \cdot v_{2,i_2}^s \cdots v_{d,i_d}^s$.

A first case: matrices

• Suppose $k \leq m \leq n$. If $M \in Mat_{m \times n}(\mathbb{C})$ has rank k then \exists (full rank) $A \in Mat_{m \times k}(\mathbb{C})$ and \exists (full rank) $B \in Mat_{k \times n}(\mathbb{C})$ such that

M = AB but also $M = (AU)(U^{-1}B),$

for any (full rank) $U \in Mat_{k \times k}(\mathbb{C})$.

So dim $(\sigma_k(\mathbb{P}^{m-1} \times \mathbb{P}^{n-1}))$ has dimension $m \cdot k + n \cdot k - k^2 - 1$.

- Expected dimension: $ExpDim(\sigma_k(\mathbb{P}^{m-1} \times \mathbb{P}^{n-1})) = \min\{n \cdot m 1, k \cdot (n + m 1) 1\}.$
- So the defect is $k \cdot (n+m-1) 1 (m \cdot k + n \cdot k k^2 1) = k^2 k$.
- Rank k matrices are defective (and thus not identifiable) for $k \neq 0, 1$.

First examples of equations of secant varieties: Flattenings

Given $\mathcal{T} \in V_1 \otimes \cdots \otimes V_d$, take index sets $I \sqcup J = [d]$. Tensor product is associative, so $V_1 \otimes \cdots \otimes V_d = (\bigotimes_{i \in I} V_i) \otimes (\bigotimes_{j \in J} V_j)$, And we can view \mathcal{T} as a (flattening) matrix:

$$F_I(\mathcal{T})\colon V_I^*\to V_J$$

Facts:

- If $\operatorname{Rank}(\mathcal{T}) = 1$, then rank $F_I(\mathcal{T}) = 1$.
- $F(\mathcal{T} + \mathcal{T}') = F(\mathcal{T}) + F(\mathcal{T}').$
- Sub-additivity of matrix rank implies if Rank $\mathcal{T} = r$ then Rank $F((T)) \leq r$.
- So, $(r+1) \times (r+1)$ minors of flattenings (if non-trivial) are equations for tensors of rank $\leq r$.

 $2 \times 2 \times 2 \times 2$ tensors Suppose $V_i = \mathbb{C}^2$ for $1 \le i \le 4$. Four different 1-flattenings (up to transpose):

 $F_{1}(\mathcal{T}): V_{1}^{*} \to V_{2} \otimes V_{3} \otimes V_{4}$ $F_{2}(\mathcal{T}): V_{2}^{*} \to V_{1} \otimes V_{3} \otimes V_{4}$ $F_{3}(\mathcal{T}): V_{3}^{*} \to V_{1} \otimes V_{2} \otimes V_{4}$ $F_{4}(\mathcal{T}): V_{4}^{*} \to V_{1} \otimes V_{2} \otimes V_{3}$

All 8×2 matrices, max rank 2. If all have rank 1, then the tensor \mathcal{T} actually has rank 1 (and vice versa).

Three different 2-flattenings (up to transpose)

 $F_{1,2}(\mathcal{T}) \colon (V_1 \otimes V_2)^* \to V_3 \otimes V_4$ $F_{1,3}(\mathcal{T}) \colon (V_1 \otimes V_3)^* \to V_2 \otimes V_3$ $F_{1,4}(\mathcal{T}) \colon (V_1 \otimes V_4)^* \to V_2 \otimes V_3$

All 4×4 . So determinants vanish for tensors of rank 3.

Oeding (Auburn)

A defective secant variety

Suppose $V_i = \mathbb{C}^2$ for $1 \le i \le 4$. Counting parameters, expect $\sigma_3(\mathbb{P}V_1 \times \mathbb{P}V_2 \times \mathbb{P}V_3 \times \mathbb{P}V_4)$ to be $3 \cdot (1 + 1 + 1 + 1) + 2 = 14$, so expect codimension 1 in $\mathbb{P}^{15} = \mathbb{P}(V_1 \otimes V_2 \otimes V_3 \otimes V_4)$. On the other hand,

> $F_{1,2}(\mathcal{T}): (V_1 \otimes V_2)^* \to V_3 \otimes V_4$ $F_{1,3}(\mathcal{T}): (V_1 \otimes V_3)^* \to V_2 \otimes V_3$ $F_{1,4}(\mathcal{T}): (V_1 \otimes V_4)^* \to V_2 \otimes V_3$

Check: any two of $\det(F_{1,2}(\mathcal{T}))$, $\det(F_{1,3}(\mathcal{T}))$, $\det(F_{1,4}(\mathcal{T}))$ are algebraically independent, so

 $\dim zeros(\det(F_{1,2}(\mathcal{T})), \det(F_{1,3}(\mathcal{T}))) = 13$

In fact, $\sigma_3(\mathbb{P}V_1 \times \mathbb{P}V_2 \times \mathbb{P}V_3 \times \mathbb{P}V_4) = zeros(\det(F_{1,2}(\mathcal{T})), \det(F_{1,3}(\mathcal{T})))$ The expected dimension is not the actual dimension, so the variety is defective, and thus rank 3 tensors of format $2 \times 2 \times 2 \times 2$ are not identifiable.

Theorem (Catalisano-Geramita-Gimigliano)

Suppose $V_i \cong \mathbb{C}^2$ for $1 \leq i \leq d$. For all $d \geq 5$ and all k, $\sigma_k(\mathbb{P}V_1 \times \cdots \times V_d)$ has the expected dimension (non-defective).

Identifiability for Binary Tensors

 $\dim \sigma_3(\mathbb{P}V_1 \times \mathbb{P}V_2 \times \mathbb{P}V_3 \times \mathbb{P}V_4) = 13 < 14$ also implies that the generic tensor of rank 3 and format $2 \times 2 \times 2 \times 2$ has infinitely many decompositions.

Definition

If the general tensor of format $n_1 \times \cdots \times n_d$ and rank k has finitely many decompositions the variety is not k-defective.

Definition

A tensor format $n_1 \times n_2 \times \ldots n_d$ is called *k*-identifiable if the generic tensor of that format and rank k has a unique (up to trivial re-ordering) decomposition as the sum of k rank-1 tensors.

Theorem (Bocci-Chiantini 2014)

 $2 \times 2 \times 2 \times 2 \times 2$ tensors are not identifiable in rank 5, but the generic tensor of that format has exactly 2 decompositions.

Theorem (Bocci-Chiantini-Ottaviani 2014)

For ≥ 6 factors, the Segre is almost always k-identifiable.

Identifiability for Perfect Tensors

A tensor of format $n_1 \times \cdots \times n_d$ is of *perfect* format if $[\prod_{i=1} n_i]/[1 + \sum_i (n_i + 1)]$ is an integer (generically have finitely many decompositions).

Theorem (Hauenstein-Oeding-Ottaviani-Sommese '14)

- The general $3 \times 4 \times 5$ tensor has a unique decomposition of rank 6.
- The general $2 \times 2 \times 2 \times 3$ tensor has a unique decomposition of rank 4.

Conjecture (Hauenstein-Oeding-Ottaviani-Sommese '14)

The only perfect formats (n_1, \ldots, n_d) where a general tensor has a unique decomposition are:

- **9** (2, k, k) for some k matrix pencils, classical Kronecker normal form,
- (3, 4, 5), and
- **(**2, 2, 2, 3).

(see arXiv:1501.00090)

Out of Bernd Sturmfels's Algebraic Fitness Session

Find the equations of $\sigma_5(\operatorname{Seg}(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1))$:

Theorem^{\star} (Oeding-Sam [*Exp. Math 2015*])

The affine cone of $\sigma_5(\text{Seg}(\mathbb{P}^{1\times 5}))$ is a complete intersection of two equations: one of degree 6, and one of degree 16.

The star refers to the careful numerical, sometimes probablistic computations used in our proofs, which took around *two weeks of human/computer time*. Note this result implies that: $\sigma_5(\text{Seg}(\mathbb{P}^{1\times 5}))$ is arithmetically Cohen-Macaulay.

Find equations in the ideal

Consider $\sigma_5(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1) \subset \mathbb{P}^{31}$. Look for equations in $R = \mathbb{C}[x_{00000}, \dots, x_{1111}]$ of low degree.

The Hilbert function of R starts like this:

d	=	0	1	2	3	4	5	6	7	
$HF_R(d)$	=	1	32	528	5984	52360	376992	2324784	12620256	
$HF_{R/I}(d)$	=	1	32	528	5984	52360	376992	2324783	?	
$\dim(I_d)$	=	0	0	0	0	0	0	1	?	

Naively, to find the space of sextics in the ideal: compute 2324784 points on the variety, evaluate them on the 2324784 monomials of degree 6 and compute the kernel of the resulting 2324784×2324784 matrix.

The space of degree 16 equations has dimension 511 738 760 544, so it seems hopeless to work here.

The equation f_6

Choose a basis e_0, e_1 for V_i so that we can identify the coordinates of $\mathbb{P}(\mathbb{V})$ with x_I where $I \in \{0,1\}^5$. Given a monomial in the x_I , define its skew-symmetrization to be $c^{-1} \sum_{\sigma \in \Sigma_5} \operatorname{sgn}(\sigma) x_{\sigma(I)}$ where c is the coefficient of x_I in the sum. The polynomial f_6 has 864 monomials and is the sum of the skew-symmetrizations of the following 15 monomials:

- $-x_{00000}x_{01010}x_{01101}x_{10011}x_{10100}x_{11111},$
- $-x_{00000}x_{01100}x_{01111}x_{10011}x_{10110}x_{11001},$
- $-x_{00110}x_{01000}x_{01101}x_{10000}x_{10011}x_{11111},$
- $x_{00100}x_{01000}x_{01111}x_{10011}x_{10110}x_{11001},$
- $-x_{00100}x_{01010}x_{01111}x_{10001}x_{10111}x_{11000},$
- $-x_{00101}x_{01010}x_{01111}x_{10000}x_{10110}x_{11001},$
- $-x_{00110}x_{01001}x_{01100}x_{10001}x_{10010}x_{11111},$

 $\begin{aligned} x_{00000}x_{01100}x_{01111}x_{10010}x_{10111}x_{11001}, \\ x_{00000}x_{01101}x_{01110}x_{10011}x_{10110}x_{11001}, \\ x_{00100}x_{01010}x_{01111}x_{10000}x_{10111}x_{11001}, \\ x_{00110}x_{01000}x_{01101}x_{10001}x_{10010}x_{10101}x_{11000}, \\ x_{00100}x_{01011}x_{01110}x_{10011}x_{10101}x_{11000}, \\ x_{00110}x_{01001}x_{01111}x_{10011}x_{10100}x_{11000}, \\ x_{00110}x_{01001}x_{01101}x_{10011}x_{10100}x_{11000}, \\ x_{00111}x_{01010}x_{01101}x_{10011}x_{10000}x_{11000}. \end{aligned}$

Alternative description in terms of Young symmetrizers, see [Bates-Oeding'10].

The Young Symmetrizer algorithm takes as input a set of fillings of five Young diagrams, performs a series of skew-symmetrizations and symmetrizations, and produces as output a polynomial in the associated Schur module.

There are 5 standard tableaux of shape (3,3) and content $\{1, 2, \ldots, 6\}$.

The following Schur module, which uses one of each of the 5 standard fillings, realizes the non-trivial copy of $\bigotimes_{i=1}^{5} (S_{3,3}V_i)$ inside of $\operatorname{Sym}^6(V_1 \otimes V_2 \otimes V_3 \otimes V_4 \otimes V_5)$

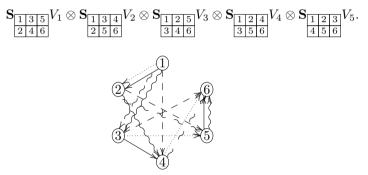
$$S_{\begin{subarray}{c}1&3&5\\\hline2&4&6\end{subarray}}V_1\otimes S_{\begin{subarray}{c}1&3&4\\\hline2&5&6\end{subarray}}V_2\otimes S_{\begin{subarray}{c}1&2&5\\\hline3&4&6\end{subarray}}V_3\otimes S_{\begin{subarray}{c}1&2&4\\\hline3&5&6\end{subarray}}V_4\otimes S_{\begin{subarray}{c}1&2&3\\\hline1&2&3\end{subarray}}V_5.$$

Can show that the image of the Young symmetrizer vanishes on an open subset of points of X.

From Ikenmeyer's intro lecture: Polynomials and graphs

Each tableau gets a color. Each column becomes a directed colored arrow.

where color 1 corresponds to \longrightarrow , color 2 to \longrightarrow , color 3 to \longrightarrow , color 4 to $\sim \Rightarrow$. color 5 to $- \rightarrow \Rightarrow$, The degree 6 invariant is described by



Combinatorics of these graphs played a strong role in the resolution of the *Garcia-Stillman-Sturmfels Conjecture* on ideals of secant line varieties [Raicu'12], and the resolution of the *Landsberg-Weyman Conjecture* on ideals of tangential varieties [Oeding-Raicu'13].

Oeding (Auburn)

The Young symmetrizer algorithm for evaluations

Input:

- Point: $Z \in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$,
- ▶ Multi-partition: ((3,3), (3,3), (3,3), (3,3), (3,3))
- $\blacktriangleright \text{ Filling: } F = \boxed{\begin{array}{c} a & c & e \\ b & d & f \\ \end{array}} \xrightarrow{\begin{array}{c} a & c & d \\ \end{array}} \left[\begin{array}{c} a & b & e \\ \hline b & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & d & f \\ \end{array} \right] \left[\begin{array}{c} a & b & d \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & d \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \hline c & e & f \\ \end{array} \right] \left[\begin{array}{c} a & b & e \\ \end{array} \\ \\[c] \left[\begin{array}{c} a & b & e \end{array} \right] \left[\begin{array}{c} a & b & e \\ \end{array} \\ \\[c] \left[\begin{array}{c} a & b & e \end{array} \\ \\[c] \left[\begin{array}{c} a & b & e \end{array} \right] \left[\begin{array}{c} a & b & e \end{array} \\ \\[c] \left[\begin{array}{c} a & b & e \end{array} \\\\ \\[c] \left[\begin{array}{c} a & b & e \end{array} \end{array} \\ \\[c]$
- Onstruct a product of determinants:
 - $p = \begin{vmatrix} a_1^1 & a_2^1 \\ b_1^1 & b_2^1 \end{vmatrix} \begin{vmatrix} c_1^1 & c_2^1 \\ d_1^1 & d_2^1 \end{vmatrix} \begin{vmatrix} a_1^2 & a_2^2 \\ b_1^1 & b_2^1 \end{vmatrix} \begin{vmatrix} c_1^2 & c_2^2 \\ b_1^2 & b_2^2 \end{vmatrix} \begin{vmatrix} c_1^2 & c_2^2 \\ c_1^2 & c_2^2 \end{vmatrix} \begin{vmatrix} d_1^2 & d_2^2 \\ d_1^2 & d_2^2 \end{vmatrix} \begin{vmatrix} b_1^3 & b_2^3 \\ d_1^3 & d_2^3 \end{vmatrix} \begin{vmatrix} b_1^3 & b_2^3 \\ d_1^3 & d_2^3 \end{vmatrix} \begin{vmatrix} c_1^3 & c_2^3 \\ d_1^3 & d_2^3 \end{vmatrix} \end{vmatrix} = 2^{15} \text{ terms (don't expand!).}$
- **3** Start with p(a, b, c, d, e, f, x) of multi-degree (5, 5, 5, 5, 5, 5, 0).
- - Produce a polynomial of multi-degree (0, 5, 5, 5, 5, 5, 0).
- $\textbf{ Substitutions: } b_i^1 b_j^2 b_k^3 b_l^4 b_m^5 b_n^6 \to x_{i,j,k,l,m,n} \text{ and } x_{i,j,k,l,m,n} \to Z_{i,j,k,l,m,n}.$
 - ▶ Produce a polynomial of multi-degree (0, 0, 5, 5, 5, 5, 0).
- **(a)** Repeat for c, d, e, f
- output: the value of p(Z).
 - Producing p(Z) takes much less time and memory than p(x).

Evaluate the highest-weight space of $S_{\pi}V \otimes M_{\pi}$ on X.

- Use characters to compute $m := \dim M_{(d,d),(d,d),(d,d),(d,d),(d,d)}$.
- **2** Make m random points y_i of ambient space, and m + 5 points x_i of X.
- Repeat the following for k = 1..m:
 - 3.0 Start with linearly independent fillings $\mathcal{F} = \{F_1, \ldots, F_{k-1}\}.$
 - 3.1 At step k take a random filling F_k of shape $(d, d)^{\times 5}$.
 - 3.2 Evaluate $p_k(y_1)$ using the Young symmetrizer algorithm for F_k .
 - * If $p_k(y_1)$ is non-zero, continue.
 - **\star** Otherwise return to (3.1).
 - 3.3 Populate the $k \times k$ matrix (one processor core per entry)

$$Q_k(y) := (p_j(y_i))_{(i,j)}$$

- 3.4 Compute $\operatorname{Rank}(Q_k(y))$
 - * If Q_k has rank k, add F_k to \mathcal{F} increment k, and return to (3.0).
 - **\star** Otherwise return to (3.1).
- Take linearly independent fillings $\mathcal{F} = \{F_1, \ldots, F_m\}$
- **③** Populate the $(m+5) \times m$ matrix (one processor core per entry)

$$Q_m(x) := (p_j(x_i))_{i,j}$$

The kernel of Q_m(x) is the subspace of M_π vanishing on the x_i
The extra points increases likelihood that ker(Q_m(x)) also vanishes on X.

Oeding (Auburn)

From Jon Hauenstein's Intro Lectures: Numerical Algebraic Geometry & Bertini

input: An irreducible variety \mathcal{H} . Output: deg \mathcal{H}

- Choose a random linear space \mathcal{L} with dim $\mathcal{L} = \operatorname{codim} \mathcal{H}$.
- $e enerate a point x \in \mathcal{H} \cap \mathcal{L}. Initialize \mathcal{W} := \{x\}.$

③ Perform a random monodromy loop starting at the points in \mathcal{W} :

- (a) Pick a random loop $\mathcal{M}(t)$ in the grassmannian of linear spaces so that $\mathcal{M}(0) = \mathcal{M}(1) = \mathcal{L}$.
- (b) Trace the curves $\mathcal{H} \cap \mathcal{M}(t)$ starting at the points in \mathcal{W} at t = 0 to compute the endpoints \mathcal{E} at t = 1. (Hence, $\mathcal{E} \subset \mathcal{H} \cap \mathcal{L}$).
- (c) Update $\mathcal{W} := \mathcal{W} \cup \mathcal{E}$.
- Repeat (2) until #W stabilizes.
- Use the trace test to verify that $\mathcal{W} = \mathcal{H} \cap \mathcal{L}$.

• Return deg $\mathcal{H} = \#\mathcal{H}(\cap \mathcal{L})$.

Proposition*

The degree of
$$\sigma_5((\mathbb{P}^1)^{\times 5})$$
 is 96

More Symmetry!

Let $\mathbb{V} := V_1 \otimes V_2 \otimes V_3 \otimes V_4 \otimes V_5$. Let $U_d = \operatorname{Sym}^d(\mathbb{V})^{\operatorname{SL}_2^{\times 5}}$ (the superscript denotes taking invariants). This has an action of Σ_5 .

Here are the dimensions of U_d , and the spaces of Σ_5 -invariants and Σ_5 skew-invariants in U_d .

Degree d	$\dim U_d$	$\dim U_d^{\Sigma_5}$	$\dim U_d^{\Sigma_5, \mathrm{sgn}}$
2	0	0	0
4	5	1	0
6	1	0	1
8	36	4	0
10	15	0	2
12	228	12	2
14	231	2	9
16	1313	39	10

This follows from standard character theory calculations.

Use linear algebra to compute bases of each space of invariants, and compute the subspaces of invariants vanishing on rank 5 tensors.

Invariant Invariants

How to compute with $U_d^{\Sigma_5}$ and $U_d^{\Sigma_5,sgn}$: Apply same Young symmetrizer method to detect non-zero fillings F. Compute for y in ambient space,

$$\sum_{\sigma \in \Sigma_5} \sigma.p_F(y) \quad \text{or} \quad \sum_{\sigma \in \Sigma_5} \sigma.p_F(y) \cdot sgn(\sigma)$$

by evaluating $\sigma p_F(y) = p_{\sigma,F}(y)$ on a different processor for each σ . Then sum the results (with or without signs).

Repeat for new fillings and evaluating on y in ambient space until finding enough linearly independent fillings.

Evaluate again on $x_i \in X$ and compute the kernel of the associated matrix

$$Q(x) = \left(\sum_{\sigma \in \Sigma} p_{\sigma F_j}(x_i)\right).$$

Each evaluation took between 500 and 23,000 seconds and up to approximately 10GB of RAM on our servers:

 $24\ {\rm cores}\ 2.8\ {\rm GHz}$ Intel Xeon processors, $144\ {\rm GB}\ {\rm RAM}$

 $40~{\rm cores}~2.8~{\rm GHz}$ Intel Xeon processors, $256{\rm GB}$ of RAM

Oeding (Auburn)

Check invariants of degrees 8, 10, 12, 14, 16. In degree 16, dim $U_{16} = 1313$. Compute evaluations in parallel, and then sum results with / without signs.

- Try \mathfrak{S}_5 -skew-invariants, $U_{16}^{\mathfrak{S}_5,sgn}$:
 - ▶ Find a basis of the 10-dimensional space $U_{16}^{\mathfrak{S}_5, sgn}$ of skew invariants.
 - Evaluate the basis on ≥ 10 random points of σ_5
 - ▶ Store results in a matrix and compute its rank
 - discover $U_{16}^{\mathfrak{S}_5, sgn} \cap I(X)$ is full-dimensional, so no new equations.
- Try \mathfrak{S}_5 -invariants, $U_{16}^{\mathfrak{S}_5}$:
 - ▶ Find a basis of the 39-dimensional space $U_{16}^{\mathfrak{S}_5}$ of invariants.
 - Evaluate the basis on ≥ 10 random points of σ_5
 - Store results in a matrix and compute its rank
 - ▶ discover $U_{16}^{\mathfrak{S}_5} \cap I(X)$ has dimension 36 (random). $f_6 \cdot U_{10}^{\mathfrak{S}_5, sgn}$ is 2-dimensional, so there is ≥ 1 minimal generator of degree 16 in I(X).

Theorem^{\star} (Oeding-Sam 2015)

The affine cone of $\sigma_5(\text{Seg}(\mathbb{P}^{1\times 5}))$ is a complete intersection of two equations: one of degree 6, and one of degree 16.

- Use Bertini (with Hauenstein's help) to find deg $\sigma_5(\text{Seg}(\mathbb{P}^{1\times 5})) = 96$
- Known codim 2, so we suspect complete intersection of two polynomials.
- Compute the only degree 6 invariant f_6 , and show that it vanishes on an open subset of X (and thus on all of X).
- Check invariants of degree 8,10,12,14,16. In degree 16, discover one new generator, f_{16} vanishes on any number of random points of X.
- $Y = V(f_6, f_{16})$, a complete intersection. Also $X \subseteq Y$ and deg $X \ge \deg Y = 96$. Since X is irreducible of codimension 2, and Y is equidimensional, Y is also irreducible (otherwise the degree inequality would be violated). So X is the reduced subscheme of Y.
- Also, this implies that $\deg(X) = \deg(Y)$, so Y is generically reduced. Since Y is Cohen–Macaulay, generically reduced is equivalent to reduced. Hence X = Y is a complete intersection.

Consequences of main result

Consider $\widetilde{X} := \sigma_5(\mathbb{P}V_1 \times \cdots \times \mathbb{P}V_5)$ for any V_i . Let $G = \prod_{i=1}^5 \operatorname{GL}(V_i)$.

- Functoriality implies that the equations $\langle G.f_6 \rangle$ and $\langle G.f_{16} \rangle$ vanish on \widetilde{X} , and are the only minimal generators of $\mathcal{I}(\widetilde{X})$ coming from modules where all partitions have at most 2 parts. (Use Sam and Snowden's Δ -module and twisted commutative algebra theory.)
- These are new equations from secant varieties, which, as far as we know, don't come from flattenings.
- A new example of a secant variety of a segre product that is a complete intersection and hence arithmetically Cohen-Macaulay.

The End