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AND SMOOTH FUNCTIONS
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(Communicated by Andrew M. Bruckner)

ABSTRACT. We present some improvements of known theorems and exam-
ples concerning intersections of continuous or Lipschitz functions with smooth
functions or intersections of smooth functions or Holder class functions with
smoother functions. We are particularly concerned with our ability to force the
projection of the intersection to be uncountable within a given set M which is
either large in measure or in category (or both).

1. INTRODUCTION

We shall restrict ourselves to the consideration of functions f : [0, 1] —
R which belong to the function classes indicated in the following diagram of
implications:

C10] Lipl

C will denote the class of continuous functions and C! the class of contin-
uously differentiable functions. Lip' will denote the class of functions such

that {|f(x) - fO)|/|x - y|: x,y € [0, 1]} is bounded, and C'®! denotes the

“Holder class” of C! functions f such that f’ € Lip'. For each n € N, D"
denotes the class of n-times differentiable functions and C” denotes the class of
n-times continuously differentiable functions. .% denotes the Lebesgue mea-
surable subsets of [0, 1], and % denotes the measure zero sets in .% . Thus,
ZL\.%% denotes the sets of positive measure and co-.2; denotes the sets of full
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measure. The statement that a subset M of [0, 1] is measure dense in a subin-
terval I of [0, 1] means that A(M NJ) > 0 for every subinterval J of I. By
denotes the sets with the Baire property (wide sense) [4], FC denotes the first
category sets, and co-FC denotes the residual sets.

The first theorem of the type mentioned in the abstract which we consider 1s
the following theorem due to Laczkovich [5] and Agronski, Bruckner, Laczko-
vich, and Preiss [1]. '

Theorem 1. If M € Z\%, then for every f € C there exists a g € C' such
that {x € M: f(x) = g(x)} is uncountable.

Thus, continuous functions have uncountable intersections with C! func-
tions and you can make the projection of this intersection be uncountable inside
any given set of positive measure. On the other hand, 1t 1s fairly easy to see that
you cannot necessarily make this intersection be uncountable inside any given
B \FC set because of the following partial converse to Theorem 1.

Theorem 2. If M € %, thereisan f € C suchthat {x € M: f(x) = g(x)} is
countable for every g € D' U Lip'.

Proof. Let M € % . It follows that there is a sequence C;, C,, ... of pairwise
disjoint Cantor subsets of [0, 1] such that A(CiUC,U---)=1 and M C G =
[0, 1I\(C;uC,U---). The C; can be chosen so that 1A(C;)+2A(C,)+ 3A(C3) +
... converges. Let A:[0, 1] — R be such that #(x) =i if x € C; for some
i € N, and h(x) = 0 otherwise. Define f(x) = fox h(t)dt. It follows that f 1s
differentiable in the “extended sense” on G, with f/(x) = +oo foreveryx € G.

Thus, {x € M: f(x) = g(x)} is countable for every g € D' U Lip'. O

2. INTERSECTION OF LiIPSCHITZ, HOLDER CLASS, AND SMOOTH FUNCTIONS

In 1944 Federer [2] (also see [3, Theorem 3.1.15]) proved a theorem from

which it follows that functions in D! U Lip' intersect C! functions and that
you can make the projection of the intersection be of positive measure inside
any given .Z\.% set M . We now prove a category version of this result.

Theorem 3. If M € B,\FC, then for every f € D' ULip' there existsa g € C!
such that {x € M: f(x) = g(x)} is uncountable.

Proof. M will be residual in some subinterval of [0, 1]. We assume without
loss of generality that M is co-FC on [0, 1] and let G; D G, 2 --- be a
sequence of dense open subsets of [0, 1] such that G;NG,N--- C M.

We first consider the case where f € Lip' (the D! case follows easily from
this case). We know that f is a.e. differentiable, that f’ 1s bounded, and that
f(x) = [y f'(1)dt for every x € [0,1]. Let M and m be the supremum
and infimum, respectively, of the range of f’'. We assume without loss of
generality that 0 < m < M < 1. Otherwise, we could work with the function
F(x)= fox F'(t)dt, where F'(x) = (f'(x)—m)/(M — m), and transform back
to f at the end of the argument.

Case 1. We assume there is a number 0 < 7 < 1 and an interval I = [a, b] C
[0, 1] such that the sets U, = {x: f'(x) >t} and V; = {x: f'(x) <t} are both
measure dense in 7. It follows that the function A(x) = f(x)—f(a)—t(x—a) 1s
“nowhere monotone” on / (i.e., monotone on no subinterval of I). It follows
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[6] that there 1s a number s such that the set 7" = {x € I : h(x) = s} is
uncountable. Let xy and x; be elements of 7. Using continuity of 4, we can
find short pairwise disjoint closed intervals Iy and /; located close to xp and
X1 , respectively, lying interior to G; NI, having common length d;, and such
that1if x €Iy and y € I,, then |x —y|>d; and |h(y) — h(X)|/|ly — x| < 1/1.
This completes stage 1 of the construction.

Now, suppose » 1s a positive integer and that the intervals {/,: b € {0, 1}"},
all having common length d,, have been constructed. Let b € {0, 1}". There
is a number s, such that the set T, = {x € I: h(x) = s,} is uncountable.
Let xpo and Xx;, be two elements of 7. We can find short pairwise disjoint
closed intervals Ipg and I, close to x;; and Xxj;, respectively, lying interior
to Gpy1 N1, having length d,.; < d,/2 (same d,,; forall b € {0, 1}"), and
such that if x € I5 and y € I}, then |[x—y| > d,,, and |h(y)—h(x)|/|y—x| <
1/(n+1). |

Now, let P =) .yU{lp: b € {0, 1}"}. P is a perfect subset of G; NG, N
.-+ C M and h|P satisfies the “uniform differentiability” requirements of the
Whitney Extension Theorem [8; 3, Theorem 3.1.14] which guarantee that A|P
can be extended to a C! function H. Then, the C! function g defined by
g(x) = H(x)+ f(a)+t(x—a) agrees with f over P, and the theorem is proved
1n this case.

Case I1. We assume the bare denial of Case I (1.e., for every number 0 < ¢ < 1
and every subinterval I of [0, 1], there is a subinterval J of I such that either
AUNT)=0or A(,NnJ)=0). Let n € N. It follows from the assumptions
that there will exist an interval I C [0, 1] and an integer i, 1 < i < n, such
that A({x € I : f'(x) > i/n or f'(x) < (i—1)/n}) = 0. To see this, first
start with / = »n and ¢ = i/n. There is a subinterval J, of [0, 1] such that
either A(U;NJ,) =0 or A(V;NJ,) =0. If 1t 1s the latter case set I = J, and
we are through. Otherwise, set i = n — 1 and repeat to get J,_; C J,. If
A(VinJ,_1) =0, we are through. Otherwise, if necessary, continue the process
until we get to J; C J>, which must suffice for 7.

Consequently, there will exist a collection H, of such intervals I such that
the intervals in H, are pairwise disjoint, the closure of each interval in H,
ies 1n the interior of an interval of H,_,, and |JH, is dense in [0, 1]. Let

H = ﬂnEN U HH . ‘ '
It follows that for every x € H, f’(x) exists. To see this, let 7;, I,,... be
the sequence of intervals from H,, H,, ..., respectively, containing x. For

each n, let i, be the integer i described above for which

A{y € In: f(y) > i/nor f(y)<(i—1)/n})=0.

Notice that the sequences {(i, — 1)/n} and {i,/n} both converge to some
common number m . f’(x) must exist and equal m . To see this suppose e > 0
and let » besuchthat 1/n <e. Considerany y in I,. [f(¥y)-f(x)]/(y—x) =
[2 f'(t)dt/(y—x), which lies between (i,—1)/n and i,/n, which in turn differ
by less than & and also have m between them.

It 1s clear that for every x € H, f' is “essentially continuous” at x (i.e.,
for every &€ > 0, there exists 6 > 0 such that {y: |[x —y| < d, f'(y) exists,
and |f'(y) - f'(x)| > &} is ).

We will now describe a special Cantor subset P of G = G;NG,N--- (defined
at beginning of proof). Choose two points xo and x; of GNn H and two
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disjoint closed neighborhoods I, and I, of Xy and X, respectively, lying
in Gy, lying inside intervals of H;, and having length < 1/2 and two open
intervals J, and J; of length less than 1/2 such that A({x € I;: f'(x) exists
and f'(x) ¢ J;}) =0 for i =0, 1. Let K be the closed interval lying between
I{) and I, .

Now suppose # is a positive integer and b € {0, 1}". Choose two points
xpo and xp; of GNH interior to I, and two disjoint closed neighborhoods Iy
and I, of x,, and Xx,;, respectively, lying in G, NI, lying inside 1ntervals
of H,,, and having length < 1/2"*! and two open intervals J,o and Jp, of
length less than 1/27*! | lying inside J,, and such that

A{x € I;: f'(x) exists and f'(x) ¢ Jpi}) =0

for i =0, 1. Let K; be the closed interval lying between I, and Iy .

The set P =,y U{lp: b € {0, 1}"} is a perfect subset of G and f'|P 1s
continuous. We now extend f’|P in a special way to a continuous function A
on [0, 1]. First let (¢, d) be the interval contiguous to P which contains the
interval K. Notice that f’(x) € (-=0.5, 1.5) for a.e. x € (¢, d), so h can be
defined continuously on [c, d] so that (1) A(c) = f'(c) and h(d) = f'(d), (2)
h(x) € (0.5, 1.5) forevery x € (¢, d), and (3) fcdh(t)dt = fcdf’(t) dt. This
can be accomplished in two steps. First choose ¢’ close to ¢ and d’ close to
d with c < ¢’ <d <d. Let hy(x) = f'(c)on [c, ¢’) and hy(x) = f'(d) on
(d', d]. For ¢/ —c and d —d’ small enough we can set ho(x) equal to some
constant k € (-0.5, 1.5) for x € [¢’, d'] so that (3) holds for Ay in place
of k. Then for some small § > 0, we can let A(x) = ho(x) on [c, ¢’ — 0]},
[c'+6, d'—6), and [d’'+6, d], and let h be linear across the gaps [¢'—0, ¢'+0]
and [d’' — 6, d' + 8], and we will have the desired 4.

Suppose n is a positive integer and b € {0, 1}". Let (c(b), d(b)) be
the interval contiguous to P which contains the interval K,. Notice that
f'(x) € J, for a.e. x € (c(b), d(b)); so using the method described above,
h can be defined continuously on [c(b), d(b)] so that (1) h(c(b)) = f'(c()))
and h(d(b)) = f'(d(b)), (2) h(x) € J, for every x € (c(b), d(b)), and (3)

d(b d(b
[ h(@yde = [, /(D dt.
Set h|P = f'|P, and extend £ continuously to the left and right of P. Let
a be the least element of P. Now, if g is defined by g(x) = f(a)+ | : h(t)dt,

it follows that f|P = g|P, and this completes the proof for the case f elLip'.
If f e D', then there exists an interval I C [0, 1] relative to which f is

Lip1 , and the argument given above will apply relative to /. O

Remark. Federer’s original theorem [2] does not just apply to functions 1in
D! N Lip', it actually yields the desired conclusion for functions which are
continuous and which are what would be called “a.e. pointwise Lip! ”. This
class of functions is much larger than D'ULip’ and, in fact, includes the abso-
lutely continuous (and even the CBV) functions. We did not state our Theorem

3 for this larger class because the conclusion of our Theorem 3 does not even
hold for the absolutely continuous functions. The function constructed in the

proof of Theorem 2 shows this.
Of course, we cannot get the exact category analog of Federer’s intersection
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theorem, obtaining {x € M: f(x) = g(x)} € Byx\FC at the end, because of the
following. '

Example 4. There exists a Lip' function f such that for every D!'g, the set
{x: f(x) = g(x)} is nowhere dense.

Proof. Let C;, C,, ... be a sequence of pairwise disjoint Cantor Subsets of
[0, 1] such that A(C;UCU---) =1 and such that if x € C, for some n,
then C, has one-sided (left or right) upper density equal to 1 at x. Let M =
[0, IN(CLUCyU---). Define 2 sothat A(x)=1/n if x € C, and h(x) =0,
otherwise. Let f(x) = [y h(¢)dt. It is easily seen that f is differentiable on
M and that f'(x) = 0 for every x € M ; and 1t follows from the density
requirements on the C, that if f is differentiable at some x € C,, then
f'(x) =1/n. Suppose g is a D' function such that the set 4 = {x: f(x) =
g(x)} 1s dense in some interval I. Since A is closed, it follows that f(x) =
g(x) forevery x € I. This would imply that the range of g’|I is a disconnected
set, which is a contradiction. 0O

In proving Theorems 6 and 9, we will need the following lemma, which was
essentially proved by Olevskii [7] without the extra stipulations involving the
set M .

Lemma 5. If M € B,\FC, fe C!, and f' is nowhere monotone, then there
exists a g € C? such that {x e M: f(x) = g(x)} is uncountable.

Proof. We will make some slight modifications of Olevskii’s proof of Theorem
2 of [7] to account for the set M (we will also be assuming Olevskii’s Lemmas 2
and 3). If M € B,\FC, M is residual in some interval I (assume without loss
of generality that 7 = [0, 1]), and there will exist a sequence G; 2 Gy D ---
of dense open subsets of I such that G, NG, N--- C M. f’ is nowhere
monotone, so pick the points a; and a; 1n Olevskii’s argument for which
f(a1) = f(a) =[f(az) — f(a1)]/(a; —ay) to lie inside a common component
of G;. Then, pick the J; (i =1, 2) in his argument small enough so that the
closed neighborhoods A; (i =1, 2) lie interior to G, in addition to satisfying
Olevskir’s other requirements. Likewise, pick the points a;; (i, j=1, 2) and
the 0, small enough that the closed neighborhoods A;; (i, j =1, 2) lie interior
to G> and satisfy Olevskii’s other requirements. Continuing this process, we
will force Oleveskii’s resulting set £ (on which f agrees with some g € C?)
tolieinside G;NGHN---C M. O

Olevskii [7] proved that C! functions necessarily have uncountable intersec-
tions with C? functions, but he did not address the question of making the
projection of the intersection be uncountable within some given large set M .
We do this in the following theorem.

Theorem 6. If M € B, N.% and M is measure dense in some interval I in
which M is residual, then for every f € C! there exists a g € C? such that
{xe M: f(x)=g(x)} is uncountable.

Proof. 1f there exists an interval B C I on which f’ is monotone, then f”
exists a.e. on B and there will exist aset A C BN M, A € L\.%4, such
that f"”|4 1s bounded. It follows from [3, Theorem 3.1.15] that there is a
C? g such that {x € 4: f(x) = g(x)} is of positive measure and therefore

uncountable.
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If, on the other hand, f’ is nowhere monotone on 7, the result follows from
Lemma 5. 0O

The requirements on M in the hypothesis of Theorem 6 seem to be quite
strong at first glance. Still, the author actually believes that the converse (for
M € B, N.Z) of the theorem holds, but he has been unable to prove this. In
any case, the following two examples show that weaker requirements would be
insufhicient.

Example 7. There exists an F,, co--% setM and an F € C ' such that for
every g € D2UCI®l | {x e M: F(x) = g(x)} is countable.

Proof. Let P, be the Cantor set P, h; be the function , and f; be the
function f constructed in the proof of Theorem 22 (with ¢ = 0.5) of [1]. If
[a, b] is a subinterval of [0, 1], let

_ Py py={x:x=a+(b—a)y forsomey € P},
and let Ay, ; be the function defined by
hig py(x) = (b—a)hi((x —a)/(b—a)) foreachx € [a, b].

Let P, = |J{PFq4.p: (a, b) 1s an interval cont1guous to P} U P, let hy be the
function such that h;(x) = Ay, p(x) 1if X 1s1n an 1nterva1 (a, b) contiguous

"to P; and hz(x) = 0 if x € P,, and define fr(x) = [; hg tYdt. For each
, let P, = U{Pq.p: (@, b) 1s an 1nterval contlguous to P,_ 1} J P,_1, let
h,, be the functlon such that h,(x) = Ay p(x) if x 1s in an interval (a, b)

contiguous to P,_;,let h,(x) =0 if x € P,_;, and define f,(x) = fo (t)dt.
Each A, is continuous, and A, + hy + --- converges uniformly to a contmuous
function that we denote by H. We denote the C! limitof fi+ f,+--- by F.
LetM = P,UP,U---, which is co--%.

Suppose there is a g € D* U C'®! such that M' = {x € M: F(x) = g(x)}
is uncountable. Either M’ N P; is uncountable or there is a first n > 2 such
that M' N P[,{I p} 1s uncountable for some interval (a, b) contiguous to P,_;.
If M’'NP; is uncountable, we can achieve a contradiction similar to the contra-
diction obtained in [1] and similar to the contradiction we obtain 1n the more
complicated latter case, so we assume the latter is the case. It follows that there
is a decreasing sequence X, X2, ... of elements of M' N A, b] converging to
an element xo of M'N P, p such that each x; is a limit point of M’. We
may also assume that all of the x; lie in a neighborhood N of xy which con-
tains no midpoint of any interval (a;, b;) containing (a, b) and contiguous
to P; for any j < n— 1. It follows that each h; (j =1 2, ..,n—1) 1s
contmuously differentiable on N and that E,_; = f1 + fo+ -+ fuo1 18 twice
continuously differentiable on N. LetF, = F - E,_,, G g—FE, ,, and
H, =hn+hn+1 + -

In the case that g € D?, it follows that G is twice differentiable on N and
G'(xo) = F!(x0) = Hy(xo) = 0, so that L’Hopital’s rule can be applied as 1t was
in [1] to conclude that

lim [G(x;) — G(x0)]/(xi — X0)* = G"'(x0)/2.

I— 00

On the other hand, G(x;) = F,(x;) for i =0,1, 2, ..., and the geometry of
the construction of Ay, ) 1s similar enough to that in [1] to conclude that since

lim [ f,(x;) — fa(X0)1/(Xi — X0)* = +00,

{— OO0
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the larger difference quotients will do the same and
lim [F (x;) — Fn(x0)1/(xi — X0)? = +00.

I—rOC
This provides the desired contradiction for the case g € D?.
In case g € C'®! we still have that G is differentiable on N, G'(xg) =0,

and G’ 1s Lip1 (relative to N). For each i, there will exist xp < y; < x; such
that |

[G(x;) — G(x0)]/(xi — x0)* = G'(¥:)/(xi — x0) =[G’ (¥i) = G'(x0)]/(x: — Xo)

so that, since G’ is Lip' relative to N,
lim sup[G(x;) — G(x0)]/(xi — X0)* < +00.
I — OO
But this contradicts the fact that
lim [F,(x;) — Fu(x0))/(xi — X0)* = +0o0,

| — 00

which still holds. O

Example 8. There exists an N € (_CZ’ \-%) N (co-FC) and an f € C! such that
{x e M: f(x) = g(x)} is countable for every g € D*?U C'®!

Proof. Again, let ¢ =1/2, P, be the set P with A(P)=1-¢, and f; be the
function f described in the proof of Theorem 22 of [1]. Let P, P3, ... be a
sequence of pairwise disjoint Cantor subsets of [0, 1]\ P, such that A(P;) = 1/2
for i = 2,3,.... Let k be the funcuon f described in Theorem 2 with
M =0, 1]\(PlUP,U---),and let fr(x) = [; k(¢)dt. The function f = fi+ f;

is C! and N = P, UM is residual and of posrtwe measure.

Suppose g € D? U C'®! and that the set 4 = {x € N: f(x) = g(x)} is
uncountable.

It AN M 1s uncountable, then AN M contains a condensation point x of
itself such that x 1s not a midpoint of any interval contiguous to P; . It follows
that f{(x) =0 but f5(x) =400, so that f”(x)=D*g(x)= 400, which is a
contradiction. DT and D, are the notation for the upper and lower right Dini
derivatives.

If AN P, 1s uncountable, 1t follows that there 1s a convergent decreasing
sequence Xx; — Xg, where x, e ANP,,for k=0,1,2,...,and each x;, 1s a
bilateral condensation point of AN P;. It follows, as in [1], that D* f{(xg) =
+o00. Since f = k 1is strictly increasing, D, f,(xp) > 0. Thus, D* f'(xy) =
D*g'(xp) = +00, which 1s a contradiction. O

In 1951 Whitney [9] (also see [3, Theorem 3.1.15]) proved a theorem from
which it follows that functions in D? U C!'®! intersect C? functions and that
the projection of the intersection could be made of positive measure inside any
given X \.%4 set. We now prove the following category analog of that result.

Theorem 9. If M € B,\FC, then forevery f € D*UC'®! there existsa g € C?
such that {x € M: f(x) = g(x)} s uncountable.

Proof. The proof is essentially similar to the proof of Theorem 3. We start with
the same sets Gy, &>, ... and proceed by replacing f in that proof with [’
in this argument and replacing f’ in that proof with f’ in this argument. We
first assume f € C!®!
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Case 1. Because the sets U; = {x: f"(x) < t} and V; = {x: f"(¢t) > t} are
both measure dense in I, it follows that the function A(x) = f'(x) — f'(a) —
t(x — a) is nowhere monotone on /. We then set

H(x) = f(x)— f'(a)(x —a) — t(x — a)*/2,

call on Lemma 3§ as it applies to the function H , and use this to finish the proof
for this case.

Case 11. We proceed as we did in the proof of Theorem 3, using f” in
place of f’, obtaining the similar sets H, and the set H on which f” 1is
essentially continuous. We define similar points x; and intervals I,, J,, and
K, for finite binary sequences b, using f” in place of f', obtaining a similar
perfect set P. We then need to extend f”|P to a continuous function /2 on
[0, 1], but there is an extra requirement on the extension in this argument.
At the point where b € [0, 11" and (c(b), d(b)) is the interval contiguous to
P which contains the interval K; we define 4 continuously on [c(b), d())]
so that (1) A(c(b)) = f"(c(b)) and h(d(b)) = f"(d(b)), (2) h(x) € Jp for
every x € (c(b), d(b)), and (3) hi(d(b)) — m(c(b)) =’ (d(b)) / ’(C(b)) and
(4) hy(d(b)) — ha(c(b)) = f(d(b)) — f(c(b)), where hi(x) = [, h(t)dt and

ha(x) = f;(:b) m(t)dt.

Construction of this function 4 1s a bit more complicated than the construc-
tion of the function 4 in Case II of the proof of Theorem 3. To illustrate
the method of construction, assume (c, d) is an interval such that f“(c) and
f"(d) exist and lie in an interval J = (#, v), which is such that u < f"(x) <v
for a.e. x € (¢, d). Consider what the functlon /! must be like on [c, d].
Extend lines U; and V; with slopes u# and v, respectively, to the right from
(¢, f'(c¢)) and lines U, and JV; with slopes # and v, respectively, to the
left from (d, f'(d)). Since u < f”(x) < v ae.on (¢,d) and f'(x) =
f'(c)+ [ f"(t)dt for x € [c, d], it follows that these four lines form a par-
allelogram Q w1th (¢, f'(c) and (d, f'(d)) at opposite corners. It 1s also the
case that f’'|(c, d) lies interior to the parallelogram Q. Now, choose ¢’ close
to ¢ and d’ closeto d with c<c’' <d' <d. Let ho(x)= f'(c)+ f"(c)(x~c)
for x € [c, '], and let ho(x) = f'(d) + f"(d)(x —d) for x € [d', d]. As-
suming ¢ — ¢ and d — d’ are small enough, i1t will be possible to choose an
s € (¢',d') and extend Ay continuously on [¢’, d’] to be linear on [¢’, 5] and
linear on [s, d’], with the slopes of both extensions between « and v, and

in such a way that f ho(t)dt = f ' (tydt. ho is polygonal line graph on
[c, d], and we now need to “round ofl” the corners which occur at (c¢’, hg(c’)),
(s, ho(s)), and (d’, ho(d’)) to make it C'. In this smoothing operation, we
must make sure that the resulting function #; still satisfies u < Aj(x) < v for

x €lc,d] and [*h(t)dt= [ f'(t)dt. -
Now, we define A, 11ke this on each interval (¢, d) = (c(b), d(b)) for b €
{0, 1}* and J = J, as described in the previous paragraph and define 7;|P =
f'|P. Then hj is the desired function £ .
Then, if a is the least element of P and g is defined by g(x) = f(a) +

|7 g(t)dt, where g is defined by g(x) = [ h(2)dt, it follows that f|P =

glP, and this completes the proot for the case where fecCctel,
 The case where f € D? follows easily. C
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Example 10. There exists a C!®! function f such that for every D?g the set
{x: f(x) = g(x)} 1s nowhere dense.

Proof. To obtain this example, just take the indefinite integral of the function
of Example 4.

1.

o

19.

A
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