Theorem 2. Let $r \ge 2$. If $p_1, p_2, ..., p_r$ are the first r primes of the form $p_i = 4k_i + 3$, then the interval $(p_r, \prod_{i=1}^{r} p_i)$ contains at least $\lfloor \log_2(4(r-1)) \rfloor$ primes congruent to 3 modulo 4.

Proof. For r = 2 or 3, the result can be checked by hand, so we assume that $r \ge 4$. Since $p_4 = 19 > 4 \cdot 4$, we have $4r < p_r$. If $1 \le j \le \lfloor \log_2(4r) \rfloor + 1$, it follows that $2^{j+1} < 4p_r$. Hence

$$\prod_{1}^{r} p_i - 2^{j+1} > 7p_r - 4p_r > p_r.$$

If *r* is odd, set $n_k = \prod_{i=1}^{r} p_i - 2^{k+1}$. Then $n_k \equiv 3(4)$ (since $3^2 \equiv 1(4)$). But no p_i divides n_k for $1 \le i \le r$, so the integer n_k has some prime factor $q_k \equiv 3(4)$ with $q_k > p_r$. If $j \ne k$, say j > k, the assumption that q_k also divides n_j leads to the same contradiction as earlier: since $n_k - n_j = 2^{j+1} - 2^{k+1} = 2^{k+1}(2^{j-k} - 1)$, we have $q_k \mid 2^{j-k} - 1$ and hence $q_k < p_r$. Thus, there are at least $\lfloor \log_2(4r) \rfloor + 1$ distinct primes of the form $4\ell + 3$ in $(p_r, \prod_{i=1}^{r} p_i)$. If *r* is even, the same argument applied to r - 1 shows that there are at least $\lfloor \log_2(4(r-1)) \rfloor + 1$ distinct primes of the form $4\ell + 3$ in $(p_{r-1}, \prod_{i=1}^{r-1} p_i)$. Since the first of these is p_r , there are at least $\lfloor \log_2(4(r-1)) \rfloor$ distinct primes of the form $4\ell + 3$ in $(p_r, \prod_{i=1}^{r-1} p_i)$, a subinterval of $(p_r, \prod_{i=1}^{r} p_i)$.

Universidad de La Rioja, 26004 Logroño, La Rioja, Spain. aldaz@dmc.unirioja.es

142

Departament of Mathematics, University of Michigan, Ann Arbor MI 48109-1109 anabz@math.lsa.umich.edu

Smooth Interpolation, Hölder Continuity, and the Takagi–van der Waerden Function

Jack B. Brown and George Kozlowski

1. INTRODUCTION. Consider the classes of functions $f : [0, 1] \rightarrow \mathbb{R}$ indicated in the following diagram (where $0 < \beta < \alpha < 1$):

$$C^1 \subset Lip^1 \subset \bigcap_{0 < \gamma < 1} Lip^{\gamma} \subset Lip^{\alpha} \subset Lip^{\beta} \subset C,$$

in which C denotes the class of continuous functions, C^1 the class of continuously differentiable functions, and

$$Lip^{\alpha} = \{ f \in C : \exists K > 0 \ni | f(x) - f(y)| < K | x - y|^{\alpha} \text{ for } x, y \in [0, 1] \}$$

the class of Lipschitz (or Hölder continuous) functions of order α . The symbol λ signifies Lebesgue measure. Marcinkiewicz [7] showed that there is a strong interpolation

link between the classes C^1 and Lip^1 when he proved: if f belongs to Lip^1 , then for every $\epsilon > 0$ there exists g in C^1 such that $\lambda(\{x : f(x) \neq g(x)\}) < \epsilon$. Marcinkiewicz actually required only that f be "pointwise" Lip^1 (i.e., that f(x + t) = f(x) + O(t)at each x) and obtained similar results for higher order smoothness. Federer [5, p. 442] obtained the analogous Lip^1-C^1 result in higher dimensions, and Whitney [13] extended Federer's results to higher order smoothness (see also [6, p. 227]). Whitney described an example of a function ϕ of one variable that was designed to show that one could not weaken the requirement of f being in Lip^1 in the Marcinkiewicz theorem. He stated the following [13, p. 144]:

Let $\phi_0(t)$ be the distance from t to the nearest integer. Using any sufficiently large integer a, set

$$\phi_i(t) = 2^i \phi_0(a^i t) / a^i, \quad \phi(t) = \sum_{i=0}^{\infty} \phi_i(t).$$

Then ϕ satisfies a Lipschitz condition of order $1 - \alpha$, for any $\alpha > 0$; but [the conclusion of Marcinkiewicz's theorem] is not true for it.

The function ϕ_0 is the familiar "rooftop" function, with "roofs" having slopes ± 1 . For n > 0 the roofs of ϕ_n have slopes $\pm 2^n$. The graphs of ϕ_1 and ϕ_2 on [0,1], with a = 3, are displayed in Figure 1. Whitney's statement would seem to suggest that for sufficiently large a in \mathbb{N} the resulting function ϕ would belong to $\bigcap_{0 < \gamma < 1} Lip^{\gamma}$. Such, however, is not the case.

Theorem 1. Let a in \mathbb{N} be greater than 2, let ϕ be the function described by Whitney, and let $t_0 = 1 - \ln(2)/\ln(a)$. Then ϕ has the following properties:

1. ϕ is not a member of Lip^{α} for any α satisfying $t_0 < \alpha \le 1$; in fact, for $\tau_N = 1/(2a^N)$ the quotients

$$\frac{|\phi(\tau_N) - \phi(0)|}{|\tau_N|^{\alpha}}$$

are unbounded as $N \to \infty$.

2. ϕ belongs to Lip^{β} if $0 < \beta \le t_0$; in fact, with L = 4(a-1)/(a-2), it is true that $|\phi(s) - \phi(t)| \le L|s-t|^{\beta}$ for all such β and for all s and t in [0, 1].

Proof. Suppose that $t_0 < \alpha \le 1$. If $i \le N$, $\phi_i(\tau_N) = 2^i \phi_0(1/(2a^{N-i})/a^i) = 2^i \tau_N$. If i > N, there are two possibilities: if a is even, $\phi_i(\tau_N) = 0$; if a is odd, $\phi_i(\tau_N) = 2^{i-1}/a^i = (2^i/a^{i-N})\tau_N$. For our purposes, it will be enough to know that $\phi_i(\tau_N) \ge 0$

February 2003]

for i > N. Then

$$\frac{|\phi(\tau_N) - \phi(0)|}{|\tau_N|^{\alpha}} = \frac{\sum_{i=0}^{\infty} \phi_i(\tau_N)}{\tau_N^{\alpha}} \ge 2^N \tau_N^{1-\alpha} \ge \frac{1}{2^{1-\alpha}} \left(\frac{2}{a^{1-\alpha}}\right)^N.$$

Since $2a^{\alpha-1} > 1$, these quotients tend to ∞ as $N \to \infty$.

Suppose next that $0 < \beta \le t_0$. For given *s* and *t* in [0, 1], let *N* be the nonnegative integer such that

$$\frac{1}{a^{N+1}} < |s-t| \le \frac{1}{a^N}.$$

Note that

$$|\phi(s) - \phi(t)| \le \sum_{i=0}^{N} |\phi_i(s) - \phi_i(t)| + \sum_{i=N+1}^{\infty} |\phi_i(s) - \phi_i(t)|$$

and that each of the functions ϕ_i is polygonal, with graph consisting of line segments of slope $\pm 2^i$ and with values in the interval $[0, (2/a)^i]$. Majorizing terms of the first sum by $2^i |s - t|$ and terms of the second by $(2/a)^i$ shows that

$$\begin{aligned} |\phi(s) - \phi(t)| &\leq \sum_{i=0}^{N} 2^{i} |s - t| + (2/a)^{N+1} \sum_{i=0}^{\infty} (2/a)^{i} \\ &= (2^{N+1} - 1) |s - t| + (2/a)^{N+1} \frac{a}{a - 2} \\ &\leq |s - t| 2^{N+1} \left(1 + \frac{a}{a - 2} \right) = |s - t| 2^{N+2} \frac{a - 1}{a - 2}. \end{aligned}$$

Thus,

$$\frac{|\phi(s)-\phi(t)|}{|s-t|^{\beta}} \le |s-t|^{1-\beta} 2^N L \le \left(\frac{2}{a^{1-\beta}}\right)^N L \le L,$$

because the hypothesis on β implies that $2a^{\beta-1} \leq 1$.

2. THE TAKAGI-VAN DER WAERDEN FUNCTION. Since

$$\lim_{a \to \infty} 1 - \frac{\ln(2)}{\ln(a)} = 1$$

and since it *can* be shown (the proof is similar to the proof of Theorem 2) that $\lambda(\{x : \phi(x) = g(x)\}) = 0$ for each g in C^1 , it would follow that one could not replace the hypothesis that f belongs to Lip^1 in Marcinkiewicz's theorem with the weaker requirement that f be in Lip^{α} for any specific choice of α in (0, 1). However, it does not show that one could not replace that requirement with the assumption that f belongs to $\bigcap_{0 < \gamma < 1} Lip^{\gamma}$. It is conceivable that the leading 2^i in Whitney's description of the function ϕ_i is actually a typographical error and that Whitney was really referring to the so-called van der Waerden function

$$v(t) = \sum_{i=0}^{\infty} \frac{\phi_0(a^i t)}{a^i}$$

144

with parameter a in \mathbb{N} , a > 1. B. L. van der Waerden [12] described this function (with a = 10) in 1930, providing a simple example of a continuous, nowhere differentiable function. The function v was described independently by other authors, including T. Takagi [11] in 1903 (as was pointed out in [1]). We refer to it as the *Takagi–van der Waerden function*. It has been shown [2], [4] that v has more pathological nondifferentiability properties than were pointed out in [12]. It turns out that v does indeed satisfy the conditions described by Whitney.

Theorem 2. The Takagi–van der Waerden function v belongs to $\bigcap_{0 < \gamma < 1} Lip^{\gamma}$, but v agrees with no function g from C^1 on any set of positive measure. In fact, if M is a subset of [0,1] with $\lambda(M) > 0$, then the set

$$D(v, M) = \left\{ \frac{v(y) - v(x)}{y - x} : x \in M , \ y \in M , \ y \neq x \right\}$$

is unbounded.

Proof. The fact that v is a member of $\bigcap_{0 < \gamma < 1} Lip^{\gamma}$ was established by Shidfar and Sabetfakhri for a = 2 in [9], and the same fact for all integers a greater than 2 follows from the theorem in [10].

For each *i* in \mathbb{N} , let $f_i(t) = \phi_0(a^i t)/a^i$, and let

$$v_n(t) = \sum_{i=0}^n f_i(t)$$

for $0 \le t \le 1$. Then f_i is a polygonal function with each segment in its graph having slope ± 1 , and v_n is likewise a polygonal function, each segment in its graph having slope some integer in the interval [-n, n].

In order to prove the second claim in the theorem, let M be a subset of [0, 1] with $\lambda(M) > 0$ and suppose that b > 0 (assume without loss of generality that b is an integer). Let z in M be a Lebesgue density point of M (i.e., for every $\epsilon > 0$ there exists $\delta > 0$ such that for every subinterval [c, d] of [0,1] that contains z and has length less than δ , it is true that $\lambda([c, d] \setminus M) < \epsilon \cdot (d - c)$ [8, pp. 12–13], [3, pp. 315–316]). Choose $\delta > 0$ corresponding to $\epsilon = a^{-b}/8$ in this definition, and consider an arbitrary subinterval [c, d] of [0, 1] that contains z and has $|d - c| < \delta$, so that $\lambda([c, d] \setminus M) < \epsilon \cdot (d - c)$. Note that this ensures that if a subinterval (u, v) of [c, d] has length $v - u \ge \epsilon \cdot (d - c)$, then (u, v) must contain a point x of M. Fix n in \mathbb{N} such that $1/a^n < \delta$. We now specify [c, d] to be the base (of length $1/a^n$) of one of the "roofs" of f_n that contains z. Write m = n + b and $e = c + a^{-n-1}$, so that [c, e] is the base of one of the "roofs" (illustrated in Figure 2) of f_{n+1} .

The polygonal function v_n has constant slope M_n over the interval [c, e]. There will be two cases to consider. Assume first that $M_n \ge 0$, and consider $h = c + (1/2a^m)$. Note that h is the abscissa of the top of a "roof" of f_m . The graph of v_m has constant slope $b + M_n$ on [c, h]. Set

$$\Delta = \frac{1}{4}(h-c) = \frac{1}{4}\frac{1}{2 \cdot a^m} = \frac{1}{8 \cdot a^{n+b}} = \frac{1}{8 \cdot a^b} \cdot \frac{1}{a^n} = \epsilon \cdot (d-c).$$

The interval (u, v) with left endpoint c and length $\Delta = \epsilon \cdot (d - c)$ must contain a point x of M. There must also exist an element y of M in the open interval of length Δ with right endpoint h (see Figure 2). We then have

February 2003]

NOTES

Figure 2.

$$v(y) - v(x) = v_m(y) - v_m(x) + \sum_{i=m+1}^{\infty} f_i(y) - \sum_{i=m+1}^{\infty} f_i(x),$$

so we can estimate

$$|v(y) - v(x)| \ge (b + M_n) \cdot (y - x) - \sum_{i=m+1}^{\infty} |f_i(y) - f_i(x)|$$

$$\ge (b + M_n) \frac{h - c}{2} - \sum_{i=m+1}^{\infty} \frac{1}{2 \cdot a^i}$$

$$= (b + M_n) \frac{h - c}{2} - \frac{1}{2 \cdot a^{m+1}} \cdot \frac{a}{a - 1}$$

$$= \left(\frac{b + M_n}{2} - \frac{1}{a - 1}\right) \cdot (h - c).$$

Accordingly, for each integer b > 0 there exist points x and y of M for which

$$\left|\frac{v(y) - v(x)}{y - x}\right| \ge \left|\frac{v(y) - v(x)}{h - c}\right| \ge \frac{b + M_n}{2} - \frac{1}{a - 1} \ge \frac{b}{2} - \frac{1}{a - 1}$$

Since b can be arbitrarily large, D(v, M) is unbounded when $M_n \ge 0$.

The case where $M_n < 0$ is similar. Take $h = d - 1/(2a^m)$, pick an element x of M belonging to the open interval of length Δ with left endpoint h, and select a point y of M belonging the open interval of length Δ with right endpoint e. The polygonal function v_m has constant slope $-b + M_n$ on [h, e]. Proceeding through inequalities similar to those given in the preceding argument, one arrives at

$$\left|\frac{v(y) - v(x)}{y - x}\right| \ge \left|\frac{v(y) - v(x)}{d - h}\right| \ge \frac{b + |M_n|}{2} - \frac{1}{a - 1} \ge \frac{b}{2} - \frac{1}{a - 1}$$

in this case as well. Again, the unboundedness of D(v, M) follows.

REFERENCES

- 1. Y. Baba, On maxima of Takagi-van der Waerden functions, Proc. Amer. Math. Soc. 91 (1984) 373-376.
- P. Billingsley, Van der Waerden's continuous nowhere differentiable function, this MONTHLY 89 (1982) 691.
- A. M. Bruckner, J. B. Bruckner, and B. S. Thomson, *Real Analysis*, Prentice Hall, Upper Saddle River, NJ, 1997.
- 4. F. S. Cater, On van der Waerden's nowhere differentiable function, this MONTHLY 91 (1984) 307–308.
- 5. H. Federer, Surface area II, Trans. Amer. Math. Soc. 55 (1944) 420-456.
- Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153, Springer-Verlag, New York, 1969.
- 7. J. Marcinkiewicz, Sur les séries de Fourier, Fund. Math. 27 (1936) 38-69.
- 8. F. Riesz and B. Sz.-Nagy, Functional Analysis, Fredrick Unger, New York, 1955.
- A. Shidfar and K. Sabetfakhri, On the continuity of van der Waerden's function in the Hölder sense, this MONTHLY 93 (1986) 375–376.
- 10. _____, On the Hölder continuity of certain functions, Exposition. Math. 8 (1990) 365–369.
- 11. T. Takagi, A simple example of the continuous function without derivative, *Proc. Phys.-Math. Soc. Tokyo Ser. II* **1** (1903) 176–177.
- B. W. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion, *Math. Z.* 32 (1930) 474–475.
- 13. H. Whitney, On totally differentiable and smooth functions, *Pacific J. Math.* 1 (1951) 143–159.

Department of Mathematics, Auburn University, Auburn, AL 36849 brownj4@auburn.edu kozloga@auburn.edu

When Does the Position Vector of a Space Curve Always Lie in Its Rectifying Plane?

Bang-Yen Chen

1. INTRODUCTION. Let \mathbb{E}^3 denote Euclidean three-space, with its inner product \langle , \rangle . Consider a unit-speed space curve $\mathbf{x} : I \to \mathbb{E}^3$, where $I = (\alpha, \beta)$ is a real interval, that has at least four continuous derivatives. Let \mathbf{t} denote \mathbf{x}' . It is possible, in general, that $\mathbf{t}'(s) = 0$ for some s; however, we assume that this never happens. Then we can introduce a unique vector field \mathbf{n} and positive function κ so that $\mathbf{t}' = \kappa \mathbf{n}$. We call \mathbf{t}' the *curvature vector field*, \mathbf{n} the *principal normal vector field*, and κ the *curvature of* the given curve. Since \mathbf{t} is a constant length vector field, \mathbf{n} is orthogonal to \mathbf{t} . The *binormal vector field* is defined by $\mathbf{b} = \mathbf{t} \times \mathbf{n}$. It is a unit vector field orthogonal to both \mathbf{t} and \mathbf{n} . One defines the *torsion* τ by the equation $\mathbf{b}' = -\tau \mathbf{n}$. The famous Frenet-Serret equations are given by (see, for instance, [4] or [6]):

February 2003]