
Theorem 2. Let r ≥ 2. If p1, p2, . . . , pr are the first r primes of the form pi = 4ki +
3, then the interval (pr ,

∏r
1 pi ) contains at least �log2(4(r − 1))� primes congruent to

3 modulo 4.

Proof. For r = 2 or 3, the result can be checked by hand, so we assume that r ≥ 4.
Since p4 = 19 > 4 · 4, we have 4r < pr . If 1 ≤ j ≤ �log2(4r)� + 1, it follows that
2 j+1 < 4pr . Hence

r∏
1

pi − 2 j+1 > 7pr − 4pr > pr .

If r is odd, set nk = ∏r
1 pi − 2k+1. Then nk ≡ 3(4) (since 32 ≡ 1(4)). But no pi divides

nk for 1 ≤ i ≤ r , so the integer nk has some prime factor qk ≡ 3(4) with qk > pr . If
j �= k, say j > k, the assumption that qk also divides n j leads to the same contradiction
as earlier: since nk − n j = 2 j+1 − 2k+1 = 2k+1(2 j−k − 1), we have qk | 2 j−k − 1 and
hence qk < pr . Thus, there are at least �log2(4r)� + 1 distinct primes of the form
4� + 3 in (pr ,

∏r
1 pi ). If r is even, the same argument applied to r − 1 shows that there

are at least �log2(4(r − 1))� + 1 distinct primes of the form 4� + 3 in (pr−1,
∏r−1

1 pi ).
Since the first of these is pr , there are at least �log2(4(r − 1))� distinct primes of the
form 4� + 3 in (pr ,

∏r−1
1 pi ), a subinterval of (pr ,

∏r
1 pi ).
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Smooth Interpolation, Hölder Continuity,
and the Takagi–van der Waerden Function

Jack B. Brown and George Kozlowski

1. INTRODUCTION. Consider the classes of functions f : [0, 1] → R indicated in
the following diagram (where 0 < β < α < 1):

C1 ⊂ Lip1 ⊂
⋂

0<γ<1

Lipγ ⊂ Lipα ⊂ Lipβ ⊂ C,

in which C denotes the class of continuous functions, C1 the class of continuously
differentiable functions, and

Lipα = { f ∈ C : ∃K > 0 � | f (x) − f (y)| < K |x − y|α for x, y ∈ [0, 1]}
the class of Lipschitz (or Hölder continuous) functions of order α. The symbol λ signi-
fies Lebesgue measure. Marcinkiewicz [7] showed that there is a strong interpolation
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link between the classes C1 and Lip1 when he proved: if f belongs to Lip1, then for
every ε > 0 there exists g in C1 such that λ({x : f (x) �= g(x)}) < ε. Marcinkiewicz
actually required only that f be “pointwise” Lip1 (i.e., that f (x + t) = f (x) + O(t)
at each x) and obtained similar results for higher order smoothness. Federer [5, p. 442]
obtained the analogous Lip1-C1 result in higher dimensions, and Whitney [13] ex-
tended Federer’s results to higher order smoothness (see also [6, p. 227]). Whitney
described an example of a function φ of one variable that was designed to show that
one could not weaken the requirement of f being in Lip1 in the Marcinkiewicz theo-
rem. He stated the following [13, p. 144]:

Let φ0(t) be the distance from t to the nearest integer. Using any sufficiently
large integer a, set

φi (t) = 2iφ0(a
i t)/ai , φ(t) =

∞∑
i=0

φi (t).

Then φ satisfies a Lipschitz condition of order 1 − α, for any α > 0; but [the
conclusion of Marcinkiewicz’s theorem] is not true for it.

The function φ0 is the familiar “rooftop” function, with “roofs” having slopes ±1.
For n > 0 the roofs of φn have slopes ±2n . The graphs of φ1 and φ2 on [0,1], with
a = 3, are displayed in Figure 1. Whitney’s statement would seem to suggest that for
sufficiently large a in N the resulting function φ would belong to ∩0<γ<1Lipγ . Such,
however, is not the case.
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Figure 1.

Theorem 1. Let a in N be greater than 2, let φ be the function described by Whitney,
and let t0 = 1 − ln(2)/ ln(a). Then φ has the following properties:

1. φ is not a member of Lipα for any α satisfying t0 < α ≤ 1; in fact, for τN =
1/(2aN ) the quotients

|φ(τN ) − φ(0)|
|τN |α

are unbounded as N → ∞.
2. φ belongs to Lipβ if 0 < β ≤ t0; in fact, with L = 4(a − 1)/(a − 2), it is true

that |φ(s) − φ(t)| ≤ L|s − t |β for all such β and for all s and t in [0, 1].
Proof. Suppose that t0 < α ≤ 1. If i ≤ N , φi (τN ) = 2iφ0(1/(2aN−i )/ai = 2iτN . If
i > N , there are two possibilities: if a is even, φi (τN ) = 0; if a is odd, φi (τN ) =
2i−1/ai = (2i/ai−N )τN . For our purposes, it will be enough to know that φi (τN ) ≥ 0
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for i > N . Then

|φ(τN ) − φ(0)|
|τN |α =

∑∞
i=0 φi (τN )

τ α
N

≥ 2Nτ 1−α
N ≥ 1

21−α

(
2

a1−α

)N

.

Since 2aα−1 > 1, these quotients tend to ∞ as N → ∞.
Suppose next that 0 < β ≤ t0. For given s and t in [0, 1], let N be the nonnegative

integer such that

1

aN+1
< |s − t | ≤ 1

aN
.

Note that

|φ(s) − φ(t)| ≤
N∑

i=0

|φi (s) − φi (t)| +
∞∑

i=N+1

|φi (s) − φi (t)|

and that each of the functions φi is polygonal, with graph consisting of line segments
of slope ±2i and with values in the interval [0, (2/a)i ]. Majorizing terms of the first
sum by 2i |s − t | and terms of the second by (2/a)i shows that

|φ(s) − φ(t)| ≤
N∑

i=0

2i |s − t | + (2/a)N+1
∞∑

i=0

(2/a)i

= (2N+1 − 1)|s − t | + (2/a)N+1 a

a − 2

≤ |s − t |2N+1

(
1 + a

a − 2

)
= |s − t |2N+2 a − 1

a − 2
.

Thus,

|φ(s) − φ(t)|
|s − t |β ≤ |s − t |1−β2N L ≤

(
2

a1−β

)N

L ≤ L ,

because the hypothesis on β implies that 2aβ−1 ≤ 1.

2. THE TAKAGI–VAN DER WAERDEN FUNCTION. Since

lim
a→∞ 1 − ln(2)

ln(a)
= 1

and since it can be shown (the proof is similar to the proof of Theorem 2) that
λ({x : φ(x) = g(x)}) = 0 for each g in C1, it would follow that one could not replace
the hypothesis that f belongs to Lip1 in Marcinkiewicz’s theorem with the weaker
requirement that f be in Lipα for any specific choice of α in (0, 1). However, it does
not show that one could not replace that requirement with the assumption that f be-
longs to ∩0<γ<1Lipγ . It is conceivable that the leading 2i in Whitney’s description of
the function φi is actually a typographical error and that Whitney was really referring
to the so-called van der Waerden function

v(t) =
∞∑

i=0

φ0(ai t)

ai
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with parameter a in N, a > 1. B. L. van der Waerden [12] described this function
(with a = 10) in 1930, providing a simple example of a continuous, nowhere differen-
tiable function. The function v was described independently by other authors, includ-
ing T. Takagi [11] in 1903 (as was pointed out in [1]). We refer to it as the Takagi–van
der Waerden function. It has been shown [2], [4] that v has more pathological nondif-
ferentiability properties than were pointed out in [12]. It turns out that v does indeed
satisfy the conditions described by Whitney.

Theorem 2. The Takagi–van der Waerden function v belongs to ∩0<γ<1Lipγ , but v

agrees with no function g from C1 on any set of positive measure. In fact, if M is a
subset of [0,1] with λ(M) > 0, then the set

D(v, M) =
{

v(y) − v(x)

y − x
: x ∈ M , y ∈ M , y �= x

}

is unbounded.

Proof. The fact that v is a member of ∩0<γ<1Lipγ was established by Shidfar and
Sabetfakhri for a = 2 in [9], and the same fact for all integers a greater than 2 follows
from the theorem in [10].

For each i in N, let fi (t) = φ0(ai t)/ai , and let

vn(t) =
n∑

i=0

fi (t)

for 0 ≤ t ≤ 1. Then fi is a polygonal function with each segment in its graph having
slope ±1, and vn is likewise a polygonal function, each segment in its graph having
slope some integer in the interval [−n, n].

In order to prove the second claim in the theorem, let M be a subset of [0, 1] with
λ(M) > 0 and suppose that b > 0 (assume without loss of generality that b is an
integer). Let z in M be a Lebesgue density point of M (i.e., for every ε > 0 there exists
δ > 0 such that for every subinterval [c, d] of [0,1] that contains z and has length less
than δ, it is true that λ([c, d] \ M) < ε · (d − c) [8, pp. 12–13], [3, pp. 315–316]).
Choose δ > 0 corresponding to ε = a−b/8 in this definition, and consider an arbitrary
subinterval [c, d] of [0, 1] that contains z and has |d − c| < δ, so that λ([c, d] \ M) <

ε · (d − c). Note that this ensures that if a subinterval (u, v) of [c, d] has length v −
u ≥ ε · (d − c), then (u, v) must contain a point x of M . Fix n in N such that 1/an < δ.
We now specify [c, d] to be the base (of length 1/an) of one of the “roofs” of fn that
contains z. Write m = n + b and e = c + a−n−1, so that [c, e] is the base of one of the
“roofs” (illustrated in Figure 2) of fn+1.

The polygonal function vn has constant slope Mn over the interval [c, e]. There will
be two cases to consider. Assume first that Mn ≥ 0, and consider h = c + (1/2am).
Note that h is the abscissa of the top of a “roof” of fm . The graph of vm has constant
slope b + Mn on [c, h]. Set


 = 1

4
(h − c) = 1

4

1

2 · am
= 1

8 · an+b
= 1

8 · ab
· 1

an
= ε · (d − c).

The interval (u, v) with left endpoint c and length 
 = ε · (d − c) must contain a
point x of M . There must also exist an element y of M in the open interval of length 


with right endpoint h (see Figure 2). We then have
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Figure 2.

v(y) − v(x) = vm(y) − vm(x) +
∞∑

i=m+1

fi (y) −
∞∑

i=m+1

fi (x),

so we can estimate

|v(y) − v(x)| ≥ (b + Mn) · (y − x) −
∞∑

i=m+1

| fi (y) − fi (x)|

≥ (b + Mn)
h − c

2
−

∞∑
i=m+1

1

2 · ai

= (b + Mn)
h − c

2
− 1

2 · am+1
· a

a − 1

=
(

b + Mn

2
− 1

a − 1

)
· (h − c).

Accordingly, for each integer b > 0 there exist points x and y of M for which

∣∣∣∣v(y) − v(x)

y − x

∣∣∣∣ ≥
∣∣∣∣v(y) − v(x)

h − c

∣∣∣∣ ≥ b + Mn

2
− 1

a − 1
≥ b

2
− 1

a − 1
.

Since b can be arbitrarily large, D(v, M) is unbounded when Mn ≥ 0.
The case where Mn < 0 is similar. Take h = d − 1/(2am), pick an element x of M

belonging to the open interval of length 
 with left endpoint h, and select a point y
of M belonging the open interval of length 
 with right endpoint e. The polygonal
function vm has constant slope −b + Mn on [h, e]. Proceeding through inequalities
similar to those given in the preceding argument, one arrives at
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∣∣∣∣v(y) − v(x)

y − x

∣∣∣∣ ≥
∣∣∣∣v(y) − v(x)

d − h

∣∣∣∣ ≥ b + |Mn|
2

− 1

a − 1
≥ b

2
− 1

a − 1

in this case as well. Again, the unboundedness of D(v, M) follows.
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When Does the Position Vector of a Space
Curve Always Lie in Its Rectifying Plane?

Bang-Yen Chen

1. INTRODUCTION. Let E
3 denote Euclidean three-space, with its inner product

〈 , 〉. Consider a unit-speed space curve x : I → E
3, where I = (α, β) is a real in-

terval, that has at least four continuous derivatives. Let t denote x′. It is possible, in
general, that t′(s) = 0 for some s; however, we assume that this never happens. Then
we can introduce a unique vector field n and positive function κ so that t′ = κn. We
call t′ the curvature vector field, n the principal normal vector field, and κ the curva-
ture of the given curve. Since t is a constant length vector field, n is orthogonal to t.
The binormal vector field is defined by b = t × n. It is a unit vector field orthogonal
to both t and n. One defines the torsion τ by the equation b′ = −τn. The famous
Frenet-Serret equations are given by (see, for instance, [4] or [6]):
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