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Abstract� We investigate the relationships between the notions of a con�
tinuous function being monotone on no interval� monotone at no point� of
monotonic type on no interval� and of monotonic type at no point� In particu�
lar� we characterize the set of all points at which a function that has one of the
weaker properties fails to have one of the stronger properties� A theorem of
Garg about level sets of continuous� nowhere monotone functions is strength�
ened by placing control on the location in the domain where the level sets are
large� It is shown that every continuous function that is of monotonic type on
no interval has large intersection with every function in some second category
set in each of the spaces Pn� Cn� and Lip��

�� Nonmonotonicity Properties

In a series of interesting papers ��� ��� ��� ��� �	�
 Garg investigated level set
structures and derivate structures of continuous functions� This investigation was
continued in a paper by Bruckner and Garg ���� These articles considered sever�
al notions that measure degrees of pathology in the class of continuous
 nowhere
monotone functions� In this section we further study the relationships among these
properties�

We use C and BV to denote the collections of functions from �
� �� into R
 the
reals
 that are continuous and of bounded variation
 respectively� Df�x� and Df�x�
denote the lower and upper �two�sided� Dini derivates
 respectively
 of a function f
at a number x �see ����� We use standard terms such as perfect sets
 �rst category
sets
 sets with the Baire property
 etc�
 whose de�nitions may be found in ����

Following Bruckner and Garg ���
 we say that a function f is nondecreasing at x

if f�t��f�x�
t�x � 
 for all t �� x in some neighborhood of x� That f is nonincreasing

at x is de�ned with the obvious modi�cation� If f is either nonincreasing at x or
nondecreasing at x then we say that f is monotone at x� That f is nonmonotone at
x means that f is not monotone at x� If f is a function and m � R then
 following
Garg �	�
 denote by f�m and f�m the functions de�ned by f�m�x� � f�x� �mx
and f�m�x� � f�x� � mx� Inclusion of the ��� and ��� avoids confusion with
ordinary subscript notation� fn
 for example
 will just denote the nth term of a
sequence ffng of functions� We say that f is of monotonic type on an interval I
���� if f�m is monotone on I for some m � R� We say that f is of monotonic type
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at x if there is m � R for which f�m is monotone at x� That f is of nonmonotonic
type at x means that f is not of monotonic type at x�

Denote by

� MNI those functions in C that are monotone on no interval �often denoted
�nwm� for �nowhere monotone��


� MTNI those functions in C that are of monotonic type on no interval �called
�nowhere monotone functions of the second species� in ��� and ��� and �func�
tions that are nowhere of monotonic type� in ���
 ���
 and �	��


� MNP those functions in C that are monotone at no point
 and
� MTNP those functions in C that are of monotonic type at no point �called
�functions of nonmontonic type� in ��� and �����

It is shown in Proposition � of ��� that a function f � C is MTNI if and only
if the sets fx � Df�x� � ��g and fx � Df�x� � ��g are both dense in �

���
It is pointed out in ��� that a function f � C is MTNP if and only if the set
fx � Df�x� � �� and Df�x� � ��g equals �

��� It is shown in ��� that MTNP
is a residual subset of C
 where C is given the uniform metric�

Theorem �� For functions f � C� the following implications hold�

MTNP �MNP �MTNI �MNI�

Proof� Only the implication MNP � MTNI needs to be proved� Suppose f �
MNP is of monotonic type on an interval �a� b�� There exists a number �indeed

an integer� m such that f�m�x� is monotone on �a� b�� Without loss of generality
we may assume that f�m is nondecreasing on �a� b�� Then f�m
 and therefore f 

is di�erentiable a�e� on �a� b�� Since f � MNP 
 f ��x� � 
 a�e� on �a� b�� Moreover

since f�m is nondecreasing on �a� b�
 Df�x� � m everywhere on �a� b�� Thus
 it
follows from Corollary ��� in Ch� �� of ��� that f is nondecreasing on �a� b�
 which
is a contradiction�

We devote the rest of this section to the nonreversability of the implications in
Theorem ��

Bruckner and Garg ��� point out that MTNI � MNI because there is a dif�
ferentiable function that is MNI 
 and a di�erentiable function cannot be MTNI �
Indeed
 if f is MNI and di�erentiable then for each m �� 
 there is a collection of
intervals whose union is dense in �
� �� such that f�m is monotone on each interval
in this collection� To see this
 recall that because f � is Baire �
 f � is continuous on
some dense G� subset of �
� ��� Again because f � is Baire �
 fx � f ��x� � 
g is a
G� set
 and since f � MNI 
 this set is dense in �
� ��� Hence
 f ��m is nonzero and
continuous on some dense subset of �
� ��� Using continuity of f ��m at these points

we obtain a collection of intervals whose union is dense in �
� �� such that f�m is
monotone on each interval in the collection�

Next we characterize the set of all points at which a function in MTNI fails to
be nonmonotone and the set of all points at which function in MNP fails to be
of nonmonotonic type
 thus establishing MTNP � MNP � MTNI in dramatic
form� We use the following general theorem of Darji ��� and some of its conse�
quences� The theorem is a variation on Theorem ��� of ����� Given functions f
and g and a number x
 we say that f and g have the same derivate structure at x
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if it is true that for every sequence fxng of points of �
� �� n fxg converging to x


limn��
h
f�xn��f�x�

xn�x � g�xn��g�x�
xn�x

i
� 
�

Theorem �� ��� Suppose fMng is a pairwise disjoint sequence of closed� nowhere
dense subsets of �
� �� and fgng is a sequence of continuous functions de�ned on
�
� ��� Then there is a continuous function f � �
� ��� R such that

�� for each x �� S�n	�Mn� Df�x� � �� and Df�x� � ���
�� f and gn have the same derivate structure at each x �Mn� and
�� for each x � Mn� there is an open set U containing x such that f � gn is

constant on U 	Mn�

Corollary �� Let M 
 �
� �� be a �rst category F� set� Then there exists a con�
tinuous function f � �
� ��� R such that f has nonzero derivative at every point of
M and f is of nonmonotonic type at each x � �
� �� nM �

Proof� Let fMng be a pairwise disjoint decomposition of M into closed sets �see
Remarks on pgs� ��	�� of ���� and let gn be the identity function for all n� Now
apply Theorem ��

Corollary �� Let M 
 �
� �� be a �rst category F� set� Then there exists a contin�
uous function f � �
� ��� R such that f ��x� � 
 for each x �M � f is nonmonotone
at each x �M � and f is of nonmonotonic type at each x � �
� �� nM �

Proof� Let fKng be a pairwise disjoint decomposition of M into closed sets� For
each positive integer n
 construct a continuous function gn � �
� ��� R such that

� gn�x� � g�n�x� � 
 for all x � Kn

� gn is of nonmonotonic type at each x � �
� �� nKn
 and

� for each x � Kn and � � 
 there are u� v within � of x such that gn�x��gn�u�
x�u � 


and gn�x��gn�v�
x�v � 
�

Such a function gn can easily be constructed by pasting togetherMTNP functions
that �wiggle� in an appropriate fashion on the intervals contiguous to Kn� Now let
fMng be a pairwise disjoint sequence of closed sets such thatKn 
Mn and for each

x � Kn and � � 
 there are u� v � Mn within � of x such that gn�x��gn�u�
x�u � 
 and

gn�x��gn�v�
x�v � 
� Indeed
MnnKn can be chosen to be at most countable� Now apply

Theorem � to fMng and fgng and obtain a function f that satis�es conclusions
��� of Theorem �� From conditions � and � it clearly follows that f ��x� � 
 for
all x � M and that f is of nonmonotonic type at each point of �
� �� nM � It also
follows from condition � that f is nonmonotone at each point of M �

Garg showed in �	� that there exist absolutely continuous functions that are
MTNI � Since no absolutely continuous function is MNP 
 this establishes that
MNP �MTNI � The following theorem goes much further by characterizing the
set of all points at which a function in MTNI is monotone�

Theorem �� Let M 
 �
� ��� The following are equivalent�

�� M is a �rst category F� set�
�� There exists f �MTNI such that M � fx � f is monotone at x g�

Proof� That � � � follows from Corollary � so assume that � holds� For each
n � N
 let
Mn �

n
x � �
� �� � for all t � �
� �� � 
 � jt� xj � �

n
�

f�t�� f�x�

t� x
� 


o
�
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Suppose n � N and fxjg is a sequence from Mn converging to an x ��Mn� We can
assume without loss of generality that there is a t such that 
 � t� x � ��n such
that f�t� � f�x�� Let � � f�x� � f�t� and pick a j such that jf�xj�� f�x�j � ���
and 
 � t � xj � ��n so that f�t� � f�xj�� It follows that f�t� � f�x� � ���

which is a contradition
 so x � Mn and Mn is closed� If Mn contained an interval
I 
 it would follow that f would be nondecreasing on I 
 so Mn is nowhere dense�
Therefore


S�
n	�Mn
 which is the set of x at which f is nondecreasing
 is a �rst

category F� set
 as is the set of x at which f is nonincreasing�

The next theorem characterizes the set of all points at which a function inMNP
is of monotonic type�

Theorem �� Let M 
 �
� ��� The following are equivalent�

�� M is a �rst category F� set�
�� There exists f �MNP such that M � fx � f is of monotonic type at x g�

Proof� That � � � follows immediately from Corollary �� To show that � � �

let f �MNP and M � fx � f is of monotonic type at x g� Observe that x �M i�
there exists an integer m such that f�m is monotone at x� Because f �MNP 
 by
Theorem � we have that f �MTNI and hence that f�m �MTNI � By Theorem �

we have that Mm � fx � f�m is monotone at x g is a �rst category F� set for each
integer m� Hence
 M �

S�
m	��Mm is a �rst category F� set�

�� Intersection theorems

Results of Padmavally ���� and Marcus ��
� show that the typical level set of an
f �MNI is uncountable�

Theorem �� For every f �MNI� f y � f���y� is uncountable g is residual in Rf �

In ���� Garg ��� strengthened Theorem � by showing the following�

Theorem �� For every f �MNI� B � f y � f���y� is perfect g is residual in Rf �

A set M is said to be c�dense in a set N if every open interval intersecting
N intersects M in a set of cardinality c �the cardinality of �

���� Note that for
continuous f 
 f���y� is perfect if and only if f���y� is c�dense in f���y�� We
now strengthen Theorem � by showing that the large part of the level set occurs
typically on any residual set in the domain�

Theorem �� If E is a residual subset of �
� �� then for every f � MNI� the set
T � f y � E 	 f���y� is c�dense in f���y� g is residual in Rf �

The proof will make use of the following three lemmas�

Lemma �� Let I be an interval and let f � I � R be a continuous function that
is constant on no interval� Then for every �rst category set F 
 R� f���F � is
�rst category� Hence� for every residual subset B of the interval f�I�� f���B� is
residual in I �

Proof� Let F 
 R be �rst category� Then F 
 S�
i	�Ni
 where each Ni is closed

and contains no interval� Since f is continuous and not constant on any interval

we have that for each i
 f���Ni� is closed and contains no interval� Since f���F � 
S�
i	� f

���Ni�
 it follows that f
���F � is �rst category�
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Lemma �� Let I be an interval and let f � I � R be a continuous function that is
constant on no interval� Let G be a dense G� subset of I� Then f�G� is residual in
f�I��

Proof� Since G is Borel and f is continuous
 f�G� is analytic� Therefore
 f�G� has
the Baire property� that is
 f�G� � D � F 
 where D is G� and F is �rst category�
We will �nish the proof by showing that D is dense in f�I�� Suppose it is not�
Then there must be a nonempty open set U 
 f�I� such that U 	 f�G� 
 F � Then
F is a �rst category set and f���F � contains the second category set G 	 f���U�

contradicting Lemma ��

Lemma �� Let f � C be constant on no interval� let E be a residual subset of
�
� ��� and let K � f y � Rf � E	f���y� is residual in f���y� g� Then K is residual
in Rf �

Proof� Without loss of generality
 we assume that E is a dense G� subset of �
� ���
Let fIig be a countable base for �
� �� consisting of relatively open intervals� For
every y � Rf 
 E 	 f���y� is a G� subset of the closed set f���y�
 so y � K if and
only if E 	 f���y� is dense in f���y�� Thus
 K � Rf n

S�
i	� �f�Ii� n f�E 	 Ii���

By Lemma �
 f�E 	 Ii� is residual in f�Ii� for every i� Therefore
 K is residual in
Rf �

Proof of Theorem �� Let f � MNI and let E be a residual subset of �
� ��� We
assume without loss of generality that E is a dense G� subset of �
� ��� Then for each
y
 f���y� 	 E is c�dense in f���y� if and only if f���y� is perfect and f���y� 	 E
is residual in f���y�� Therefore
 T � B 	K
 where B and K are as in Theorem �
and Lemma �
 respectively� So by those two results
 T is residual in Rf �

Marcus ��
� showed that the word �residual� in Theorem � cannot be replaced
by the phrase �of positive measure�� The following theorem shows that
 even for
functions f � MTNI 
 neither the word �residual� in Theorem � nor the second
occurrence of that word in Theorem � can be replaced by the phrase �of positive
measure� and that the �rst occurrence of the word �residual� in Theorem � cannot
be replaced by the phrase �full measure��

Theorem 	� If M and N are �rst category subsets of �
� �� then there exists a
function f �MTNI� with Rf � �
� ��� such that

�� for every y � N� f���y� is �nite and

�� for every y � R� f���y� 	M is �nite�

Proof� Suppose M � M� �M� � � � � and N � N� �N� � � � � � where each Mi and
each Ni is nowhere dense� Let g�x� � �

�

�
� �

p
x �p

�� x
�
� g is a function from

�

�� onto �

�� for which g��
� � g���� � �� and g��x� � �p
�
for every x� Given an

interval �a� b�
 let a� � ��a � b��� and b� � �a � �b���� Then for numbers u and v

de�ne gabuv as follows�

gabuv�x� �

�����
����

u� �v � u�g� x�a
a��a � if a � x � a�

v � �u� v�g� x�a
�

b��a�
� if a� � x � b�

u� �v � u�g�x�b
�

b�b� � if b� � x � b �

f is de�ned to be the uniform limit of the sequence ffng of functions de�ned as
follows� Let f� � g���� and let D� � f
� �g� At stage n � 
 of the inductive process
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let Dn be a Cantor set that includes the nowhere dense set Dn�� �Nn � fn���Mn�
and is such that if �c� d� is an interval contiguous to Dn�� then Dn 	 �c� d� is a
Cantor set containing c and d� To insure convergence
 also make sure the length
of the largest interval contiguous to Dn is less than ��n� fn is de�ned to equal
fn�� on Cn � f��n���Dn�� For each interval �c� d� contiguous to Dn
 f

��
n��

�
�c� d�

�
is

the union of �n disjoint intervals of equal length and if �a� b� is one of these
 we
de�ne fn to be either gabcd or gabdc on �a� b�
 depending on whether fn���a� � c or
fn���a� � d�

If �u� v� is a subinterval of �

��
 there will exist an n and an interval �c� d� con�
tiguous to Dn such that one of the components �a� b� of f��

�
�c� d�

�
is a subset of

�u� v�� fn is de�ned to be either gabcd or gabdc on �a� b�
 and the values at the cusps
that occur at a� and b� are left unchanged in subsequent fk�s and the limit function
f will have Dini derivate values of �� and �� at these places� Therefore
 it
follows from Proposition � of ��� that f �MTNI �

If y � N 
 there will be a least n such that y � Dn� then f
���y� � f��n �y� contains

at most � � �n elements� On the other hand
 if y � �
� �� n �D� � D� � � � � � then
M 	 f���y� is empty� Thus
 f has the desired properties�

The following theorem shows that the requirement in Theorem � that E be resid�
ual in �
� �� cannot be replaced with the weaker requirement that E be categorically
dense in �

�� �i�e� that every open set intersecting �

�� intersect E in a second
category set�
 even for functions f �MTNP �

Theorem 
� Let f � C be MNI �or just constant on no interval�� Then there is
a categorically dense subset E of �
� �� such that for every y � Rf � jf���y�	Ej � ��

Proof� Let fD�g���� be a trans�nite sequence enumerating the collection of al�
l G� subsets D of �
� �� such that for some subinterval I of �
� ��
 D is dense in
I � Note that for any such D and I 
 f�D� must be residual in the interval f�I�
by Lemma �
 and so jf�D�j � ��� Using trans�nite induction
 we may obtain a
sequence fy�g���� of distinct y� such that for each � � ��
 y� � f�D��� Let
S � Rf n f y� � � � �� g� Let E be a set that contains exactly one member of
each set in the collection f f���y�� 	D� � � � �� g � f f���y� � y � S g� For each
y � Rf 
 E 	 f���y� has exactly one member� That E is categorically dense in �
� ��
follows from the fact that E intersects D� for every � � ���

Theorem � says that if E is a residual subset of �
� �� then for any f � MNI
�hence for the typical f � C�
 the set E	f���y� is large for the typical y � Rf � Our
next two theorems will show that E 	 f���y� is not closed for the typical y � Rf �
We will need the following lemma�

Lemma �� Let I be a closed interval� let f be a continuous� real�valued function
de�ned on I that is monotone on no subinterval of I� and let f�I� � ��� ��� Let
W � fx � I � x is the least member of f���f�x�� g and let H�I� f� � H be the
topological closure of W � Then

�� H�I� f� is a closed� nowhere dense subset of I�
�� for each y � ��� ��� H�I� f� contains either exactly one member or exactly two

members of f���y�� and
�� for each y � ��� ��� H�I� f� contains a point of f���y� at which f jI does not

have a local extremum�
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Proof� To prove �
 we �rst note that H is closed� Now let J be a subinterval of
I � We will show that there is an open subinterval of J that does not intersect W
and therefore does not intersect H � Since f �MNI 
 J contains a and b such that
a � b and f�a� � f�b�� By making a larger if necessary
 we can further require that
f�a� � f�x� for all x � �a� b�� Similarly
 we can �nd an interval �c� d� 
 �a� b� such
that f�c� � f�x� for all x � �c� d�� Since f��c� d�� 
 f��a� c�� and �a� c� is to the left
of �c� d�
 we have that W 	 �c� d� � ��

To prove �
 let y � ��� ��� H contains the least member of f���y�� Now as�
sume that H contains three members x� � x� � x� of f���y�� we will derive a
contradiction� Choose a � �x�� x�� such that f�a� �� y� Without loss of general�
ity
 f�a� � y� Then x� � x� and f�x�� � f�x��
 so x� �� W � Therefore
 since
x� � H 
 x� must be a limit point of W � So since x� � �a� x�� and f�x�� � f�a�

we can choose b � W 	 �a� x�� close enough to x� to make f�b� � f�a�� If f�b� � y
then there would be x in �x�� a� �and therefore less than b� such that f�x� � f�b��
There cannot be such x since b � W � therefore
 f�b� � y� Since f�x�� � y and
f�a� � y � f�b�
 by continuity of f at x� we may obtain an open interval J disjoint
from �a� b� and containing x� such that for all x � J 
 f�a� � f�x� � f�b�� Since
f�J� 
 f��a� b�� and �a� b� is to the left of J 
 we have that J 	W � �
 contradicting
x� � H �

To prove �
 let y � ��� ��� Let l be the least member of f���y�� Then l �W 
 so
l � H � If f jI does not have a local extremum at l then we are done� Suppose f jI
has a local extremum at l� We may as well assume this is a local maximum� Then
f�x� � y for all x � l in I � Let l� � inf�fx � I � f�x� � y g�� Then l� � l� Since
f�x� � y for all x � l� in I and since f is constant on no subinterval of I 
 l� is a
limit point of fx � I � f�x� � y g� But l� is also
 by its de�nition
 a limit point of
fx � I � f�x� � y g� Therefore
 f�l�� � y and f jI does not have a local extremum
at l�� We will show that l� is a limit point of W 
 whence l� � H � Let 	 � 
� Choose
z � �l�� l� � 	� 	 I such that f�z� � y� Then W 	 �l�� l� � 	� is nonempty since it
contains the least member of f���f�z���

Theorem ��� For every function f �MNI there exists a �rst category subset M
of �
� �� such that for every y � Rf � M is dense in f���y�� and for a residual set
of y � Rf � every point of M 	 f���y� is a limit point of f���y� nM �

Proof� Let f � MNI � Let S be the collection of all closed intervals �a� b� 
 �
� ��
such that a and b are rational
 and let M �

S
I�S H�I� f�
 where H�I� f� is de�ned

as in Lemma �� By � of Lemma �
 H�I� f� is nowhere dense for each I � S� So since
S is countable
M is a �rst category subset of �
� ��� From � of Lemma � and from the
fact that S is countable
 it follows that for every y � Rf 
 M 	f���y� is a countable
dense subset of f���y�� By Theorem �
 the set B � f y � f���y� is perfect g is
residual in Rf � If y � B then since f���y� is perfect and M 	 f���y� is countable

every point of M 	 f���y� is a limit point of f���y� nM �

Theorem ��� There is a residual subset A of C such that for every function f � A
there exists a nowhere dense� closed subset H of �
� �� that contains a limit point of
f���y� nH for each y in the interior of Rf �

Proof� In ���
 Bruckner and Garg showed that there is a residual subset A of C
such that if f � A has minimum value � and maximum value � then f����� and
f����� each have only one member and for every y � ��� ��
 f���y� is either a
perfect set or the union of a perfect set with fzg
 where z is a point at which f has
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a local extremum� Let f � A have minimum value � and maximum value �� De�ne
H � H��
� ��� f� as in Lemma �� By that lemma
 H is a nowhere dense
 closed
subset of �
� ��� Let y be in ��� ��
 the interior of Rf � By � of Lemma �
 H��
� ��� f�
contains a point x of f���y� at which f does not have a local extremum� Because
f � A
 x must be a limit point of f���y�� By � of Lemma �
 H � H��
� ��� f�
contains at most two points of f���y�� therefore
 x is a limit point of f���y�nH �

Although we were able to make the function f in Theorem 	 be MTNI 
 we
could not have made it be MNP 
 because of the following theorem
 which gives
the analogs of Theorems �
 �
 and � that hold for functions that are MNP � The
statement that a function f is right oscillatory at x ��� means that for every 	 � 


there exist s and t such that x � s � t � x� 	 and

�
f�s�� f�x�

��
f�t�� f�x�

�
� 
�

Theorem ��� For every f �MNP �

�� f���y� is uncountable for every y � �min f�max f��

�� fy � Rf � f���y� is not perfectg is at most countable�

Proof� We �rst point out that if a � b and f�a� � y � f�b� then there exists
an x with a � x � b and with f�x� � y and f right oscillatory at x� Just let
x �maxf t � for all s with a � s � t
 y � f�s� g� A similar x exists if f�a� � y �
f�b��

To prove �
 let min�f� � y � max�f�� By the above observation
 there is at least
one x � �
� �� such that f�x� � y and f is right oscillatory at x� Also by the above
observation we have that f t � f�t� � y and f is right oscillatory at t g is dense in
itself� Since f���y� is closed
 we have that f���y� is uncountable�

As might be expected
 to prove �
 we let N be the set of y that are the ordinates
of strict local extrema of f � It is well known �see Chapter IX of ����� that N is
countable� If y � Rf n N it follows from � that f���y� is uncountable
 and since
f �MNP 
 any isolated points of f���y� would have to occur at local extrema
 but
those have been avoided� This proves ��

Corollary �� No CBV function f is MNP �

Proof� It follows from the Banach Indicatrix Theorem �Theorem ��� of Chapter
IX of ����� that if f is a BV function then f y � Rf � f���y� is �nite g is of full
measure in Rf � If f were alsoMNP this would contradict part � of Theorem ���

Theorems � and � are statements about the intersections of functions in MNI
with constant functions� They yield similar statements
 for every positive inte�
ger n
 about the intersections of functions in MTNI with functions in the spaces
Pn 
 Cn 
 Lip� of polynomials of degree � n
 of n�times continuously di�eren�
tiable functions
 and of Lipschitz functions
 respectively� We assume the following
standard norms for these spaces�

g � Pn � kgk � jg�
�j� jg��
�j� � � �� jg�n��
�j
g � Cn � kgk � jg�
�j� � � �� jg�n����
�j� supfjg�n��x�j � 
 � x � �g

g � Lip� � kgk � jg�
�j� sup
� jg�y��g�x�j

jy�xj � 
 � x � y � �
�

Let Z be one of these spaces� Note that the norm for Z takes the form kgkZ �
kg�k� � jg�
�j
 where g� denotes the function g��t� � g�t� � g�
� and k � k� is just
the norm k � k restricted to the subspace Z� � fh � Z � h�
� � 
 g� For a given
f � C
 let UZ�f� denote the �natural� open set in Z consisting of the functions
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g � Z satisfying min�f � g� � 
 � max�f � g�� It follows from the above property
of the norm that UZ�f� is the interior of the set of functions in Z that intersect f �
If f and g are functions
 we use the notation �f � g� for fx � f�x� � g�x� g�
Theorem ��� If f � MTNI� n is a positive integer� and Z is one of the spaces
Pn� Cn� Lip�� then

�� B � f g � Z � �f � g� is perfect g is residual in UZ�f�� and
�� for every residual E 
 �
� ��� T � f g � Z � �f � g� 	E is c�dense in �f � g� g

is residual in UZ�f��

Proof� Let E be a residual subset of �

��� Let X � Z� and let Y be the space
of constant functions on �

�� �identi�ed with the space R�� Since each function
in Z can be uniquely expressed as the sum of a function in X and a function in
Y 
 and since the norm for Z can be written as the sum of the two norms of these
two functions in these two subspaces of Z 
 we can identify Z with X � Y � We
use the notation of x�� and x�� of ����� It follows from Garg�s characterization of
the functions in MTNI �Proposition � of ���� that the sum of any such function
and any Lip� function is still MTNI � Therefore
 it follows from Theorems � and �
that for every �xed g � X 
 the �vertical sections� Bg � B 	 �fgg � Y� and Tg are
residual in the �vertical interval� UZ�f�g �Theorem � of ��� is the P� case of this
fact for B�� Thus
 it will follow from the �partial converse of the Kuratowski�Ulam
Theorem� �Theorem ���� of ����� that B and T are residual in UZ�f�
 provided
they have the Baire property�

Let C denote the hyperspace of closed subsets of �

�� with the Hausdor� metric�
We use the notation and facts from x�� and x�� of ���� A basic open set in C is of
the form

fX � C � X 
 U� � X 	 Ui �� � �i � � � � � n g
where the Ui are open in �

��� It is fairly easy to see that if U is open in �

��
 the
set f g � Z � �f � g� 
 U g is open and the set f g � Z � �f � g� 	 U �� � g is an F� �
It follows that the mapping 
 � Z � C de�ned by 
�g� � �f � g� is of Borel class
�� The set G � fX � C � X is perfect g is a G� set in C
 so B � 
���G� is an F��
set in Z �proved for Z � P� in ����� and therefore has the Baire property� So � is
proved�

We now prove part �� We assume without loss of generality that E is a dense
G� subset of �

��
 and let

K � f g � Z � �f � g� 	 E is residual in �f � g� g �
It follows from the proof of Theorem � that T � K 	 B
 so it will su�ce to show
that K has the Baire property� Let fVig be a countable base for �

�� consisting
of relatively open intervals� First observe that since E is a G� set and �f � g� is
closed for f and g in C


K � f g � Z � �f � g� 	E is dense in �f � g� g so

Kc �

�	
i	�

h
f g � Z � �f � g� 	 Vi �� � g 	 f g � Z � �f � g� 	 Vi 	E �� � gc

i
�

The set f g � Z � �f � g� 	 Vi �� � g is an F� set� Thus it is only necessary to
determine the nature of the sets of the form L � f g � Z � �f � g� 	 H �� � g

where H is a G� subset of �

��� The set D � fX � C � X 	H �� � g is an analytic
set in C
 as is the set D � Z in the space C � Z � One can show that the set
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M � f �X� g� � C � Z � X 
 �f � g� g is closed in C � Z 
 so N � M 	


D � Z

�
is

analytic in C �Z � The set L above is the projection of N onto Z 
 so L is analytic�
It is now easy to check that K is analytic and hence has the Baire property so that
T � B 	K is residual in UZ�f��
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