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ABSTRACT. We investigate the relationships between the notions of a con-
tinuous function being monotone on no interval, monotone at no point, of
monotonic type on no interval, and of monotonic type at no point. In particu-
lar, we characterize the set of all points at which a function that has one of the
weaker properties fails to have one of the stronger properties. A theorem of
Garg about level sets of continuous, nowhere monotone functions is strength-
ened by placing control on the location in the domain where the level sets are
large. It is shown that every continuous function that is of monotonic type on
no interval has large intersection with every function in some second category
set in each of the spaces P™, C™, and Lip!.

1. NONMONOTONICITY PROPERTIES

In a series of interesting papers [4] [5] [6] [7] [8], Garg investigated level set
structures and derivate structures of continuous functions. This investigation was
continued in a paper by Bruckner and Garg [2]. These articles considered sever-
al notions that measure degrees of pathology in the class of continuous, nowhere
monotone functions. In this section we further study the relationships among these
properties.

We use C' and BV to denote the collections of functions from [0,1] into R, the
reals, that are continuous and of bounded variation, respectively. D f(x) and D f(x)
denote the lower and upper (two-sided) Dini derivates, respectively, of a function f
at a number z (see [1]). We use standard terms such as perfect sets, first category
sets, sets with the Baire property, etc., whose definitions may be found in [9].

Following Bruckner and Garg [2], we say that a function f is nondecreasing at x
if % > 0 for all ¢t # z in some neighborhood of . That f is nonincreasing
at x is defined with the obvious modification. If f is either nonincreasing at z or
nondecreasing at = then we say that f is monotone at x. That f is nonmonotone at
x means that f is not monotone at x. If f is a function and m € R then, following
Garg [8], denote by fi,, and f_,, the functions defined by fin,(z) = f(z) + mz
and f_,,(z) = f(z) — mz. Inclusion of the “4+” and “—” avoids confusion with
ordinary subscript notation: f,, for example, will just denote the n'® term of a
sequence {f,} of functions. We say that f is of monotonic type on an interval I
[16] if fi,, is monotone on I for some m € R. We say that f is of monotonic type
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at z if there is m € R for which f,, is monotone at z. That f is of nonmonotonic
type at x means that f is not of monotonic type at z.
Denote by

e M NI those functions in C that are monotone on no interval (often denoted
“nwm” for “nowhere monotone”),

e MTNI those functions in C that are of monotonic type on no interval (called
“nowhere monotone functions of the second species” in [6] and [7] and “func-
tions that are nowhere of monotonic type” in [1], [2], and [8]),

e M NP those functions in C' that are monotone at no point, and

e MTNP those functions in C' that are of monotonic type at no point (called
“functions of nonmontonic type” in [1] and [2]).

It is shown in Proposition 1 of [6] that a function f € C' is MTNI if and only
if the sets {2 : Df(z) = +oo} and {z : Df(z) = —oo} are both dense in [0,1].
It is pointed out in [2] that a function f € C' is MTNP if and only if the set
{z:Df(r) = +o00 and Df(x) = —oc0 } equals [0,1]. It is shown in [2] that MTNP
is a residual subset of C, where C' is given the uniform metric.

Theorem 1. For functions f € C, the following implications hold:

MTNP = MNP = MTNI = MNI.

Proof: Only the implication MNP = MTNI needs to be proved. Suppose f €
MNP is of monotonic type on an interval [a,b]. There exists a number (indeed,
an integer) m such that f_,,(z) is monotone on [a,b]. Without loss of generality
we may assume that f_,, is nondecreasing on [a,b]. Then f_,,, and therefore f,
is differentiable a.e. on [a,b]. Since f € MNP, f'(z) =0 a.e. on [a,b]. Moreover,
since f_,, is nondecreasing on [a,b], Df(x) > m everywhere on [a,b]. Thus, it
follows from Corollary 4.3 in Ch. 11 of [1] that f is nondecreasing on [a, b], which
is a contradiction. O

We devote the rest of this section to the nonreversability of the implications in
Theorem 1.

Bruckner and Garg [2] point out that MTNI < M NI because there is a dif-
ferentiable function that is M NI, and a differentiable function cannot be MTNI.
Indeed, if f is M NI and differentiable then for each m # 0 there is a collection of
intervals whose union is dense in [0, 1] such that f,,, is monotone on each interval
in this collection. To see this, recall that because f’ is Baire 1, f' is continuous on
some dense G; subset of [0,1]. Again because f’ is Baire 1, {z : f'(z) = 0} is a
G5 set, and since f € M NI, this set is dense in [0, 1]. Hence, f!,, is nonzero and
continuous on some dense subset of [0, 1]. Using continuity of f!,, at these points,
we obtain a collection of intervals whose union is dense in [0, 1] such that fi,, is
monotone on each interval in the collection.

Next we characterize the set of all points at which a function in MT NI fails to
be nonmonotone and the set of all points at which function in M NP fails to be
of nonmonotonic type, thus establishing MTNP < MNP < MTNI in dramatic
form. We use the following general theorem of Darji [3] and some of its conse-
quences. The theorem is a variation on Theorem 4.5 of [13]. Given functions f
and g and a number x, we say that f and g have the same derivate structure at
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if it is true that for every sequence {z,} of points of [0, 1] \ {z} converging to =,
[f(zn)*f(w) _ 9(%)*9(@] -0

Tn—T Tn—T

limy, 00

Theorem 2. [3] Suppose {M,} is a pairwise disjoint sequence of closed, nowhere
dense subsets of [0,1] and {g,} is a sequence of continuous functions defined on
[0,1]. Then there is a continuous function f :[0,1] = R such that
1. for each © ¢ J;—; My, Df(z) = +o0 and Df(z) = —o0,
2. f and gy, have the same derivate structure at each © € M,, and
3. for each x € M, there is an open set U containing x such that f — g, is
constant on U N M,,.

Corollary 1. Let M C [0,1] be a first category F, set. Then there exists a con-
tinuous function f : [0,1] — R such that f has nonzero derivative at every point of
M and f is of nonmonotonic type at each x € [0,1]\ M.

Proof: Let {M,} be a pairwise disjoint decomposition of M into closed sets (see
Remarks on pgs. 348-9 of [9]) and let g, be the identity function for all n. Now
apply Theorem 2. O

Corollary 2. Let M C [0,1] be a first category F, set. Then there exists a contin-
wous function f : [0,1] = R such that f'(x) =0 for each x € M, f is nonmonotone
at each x € M, and f is of nonmonotonic type at each x € [0,1]\ M.

Proof: Let {K,} be a pairwise disjoint decomposition of M into closed sets. For
each positive integer n, construct a continuous function g, : [0,1] — R such that

e go(z) =g, (z) =0 for all z € K,

e g, is of nonmonotonic type at each z € [0,1] \ K,,, and

e foreach z € K, and € > 0 there are u, v within € of  such that w >0

and @)=
r—v

Such a function g,, can easily be constructed by pasting together MT N P functions

that “wiggle” in an appropriate fashion on the intervals contiguous to K,,. Now let

{M,,} be a pairwise disjoint sequence of closed sets such that K,, C M, and for each

z € K,, and € > 0 there are u,v € M,, within € of = such that W > 0 and

W < 0. Indeed, M,,\ K,, can be chosen to be at most countable. Now apply

Theorem 2 to {M,} and {g,} and obtain a function f that satisfies conclusions
1-3 of Theorem 2. From conditions 1 and 2 it clearly follows that f'(z) = 0 for
all z € M and that f is of nonmonotonic type at each point of [0,1] \ M. It also
follows from condition 3 that f is nonmonotone at each point of M. O

Garg showed in [8] that there exist absolutely continuous functions that are
MTNI. Since no absolutely continuous function is M N P, this establishes that
MNP < MTNI. The following theorem goes much further by characterizing the
set of all points at which a function in MT NI is monotone.

Theorem 3. Let M C [0,1]. The following are equivalent:

1. M is a first category F, set.
2. There exists f € MTNI such that M = {z : f is monotone at z }.

Proof: That 1 = 2 follows from Corollary 1 so assume that 2 holds. For each
n €N, let

Mn:{xe[O,l] : fora11t€[0,1]90<|t—a:|<% , WZO}.
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Suppose n € N and {z;} is a sequence from M,, converging to an « ¢ M,,. We can
assume without loss of generality that there is a ¢ such that 0 < ¢t — z < 1/n such
that f(t) < f(x). Let e = f(z) — f(t) and pick a j such that |f(z;) — f(z)| < €/2
and 0 < t —x; < 1/n so that f(t) > f(z;). It follows that f(t) > f(x) — €/2,
which is a contradition, so © € M,, and M, is closed. If M,, contained an interval
I, it would follow that f would be nondecreasing on I, so M, is nowhere dense.
Therefore, |J,> ; M,, which is the set of z at which f is nondecreasing, is a first
category F, set, as is the set of z at which f is nonincreasing. [l

The next theorem characterizes the set of all points at which a function in M N P
is of monotonic type.

Theorem 4. Let M C [0,1]. The following are equivalent:

1. M is a first category F, set.
2. There exists f € MNP such that M = {z : f is of monotonic type at z}.

Proof: That 1 = 2 follows immediately from Corollary 2. To show that 2 = 1,
let fe€ MNP and M = {z: f is of monotonic type at x }. Observe that x € M iff
there exists an integer m such that f,,, is monotone at z. Because f € MNP, by
Theorem 1 we have that f € MT NI and hence that f,,, € MTNI. By Theorem 3,
we have that M, = {x: fi is monotone at x } is a first category F, set for each
integer m. Hence, M = Uﬁzfoo M,, is a first category F, set. O

2. INTERSECTION THEOREMS

Results of Padmavally [12] and Marcus [10] show that the typical level set of an
f € M NI is uncountable.

Theorem 5. For every f € MNI, {y: f~'(y) is uncountable } is residual in R;.
In 1963 Garg [7] strengthened Theorem 5 by showing the following.
Theorem 6. For every f € MNI, B = {y: f~'(y) is perfect } is residual in Ry.

A set M is said to be c-dense in a set N if every open interval intersecting
N intersects M in a set of cardinality ¢ (the cardinality of [0,1]). Note that for
continuous f, f~!(y) is perfect if and only if f~!(y) is c-dense in f'(y). We
now strengthen Theorem 6 by showing that the large part of the level set occurs
typically on any residual set in the domain.

Theorem 7. If E is a residual subset of [0,1] then for every f € MNI, the set
T={y:ENf~'(y) is c-dense in f~'(y) } is residual in Ry.

The proof will make use of the following three lemmas.

Lemma 1. Let I be an interval and let f : I — R be a continuous function that
is constant on no interval. Then for every first category set F C R, f~1(F) is
first category. Hence, for every residual subset B of the interval f(I), f~1(B) is
residual in I .

Proof: Let F' C R be first category. Then F' C U;’io N;, where each N; is closed
and contains no interval. Since f is continuous and not constant on any interval,
we have that for each i, f~*(NV;) is closed and contains no interval. Since f~!(F) C
Usso fH(V;), it follows that f—*(F) is first category. O
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Lemma 2. Let I be an interval and let f : I — R be a continuous function that is
constant on no interval. Let G be a dense G5 subset of I. Then f(G) is residual in
f().

Proof: Since G is Borel and f is continuous, f(G) is analytic. Therefore, f(G) has
the Baire property; that is, f(G) = D U F, where D is G5 and F is first category.
We will finish the proof by showing that D is dense in f(I). Suppose it is not.
Then there must be a nonempty open set U C f(I) such that UN f(G) C F. Then
F is a first category set and f!(F) contains the second category set G N f~1(U),
contradicting Lemma 1. |

Lemma 3. Let f € C be constant on no interval, let E be a residual subset of
[0,1], and let K = {y € Ry : ENf~!(y) isresidual in f~'(y) }. Then K is residual
m Rf.

Proof: Without loss of generality, we assume that E is a dense G5 subset of [0, 1].
Let {I;} be a countable base for [0, 1] consisting of relatively open intervals. For
every y € Ry, EN f~!(y) is a G5 subset of the closed set f~'(y), so y € K if and
only if EN f~*(y) is dense in f~'(y). Thus, K = Ry \ Us2, [f (L) \ f(ENL)].
By Lemma 2, f(E NI;) is residual in f(I;) for every i. Therefore, K is residual in
Ry. O

Proof of Theorem 7: Let f € MNI and let E be a residual subset of [0,1]. We
assume without loss of generality that E is a dense G5 subset of [0, 1]. Then for each
y, f Y(y) N E is c-dense in f1(y) if and only if f~1(y) is perfect and f~(y) N E
is residual in f~!(y). Therefore, T = BN K, where B and K are as in Theorem 6
and Lemma 3, respectively. So by those two results, T" is residual in Ry. |

Marcus [10] showed that the word “residual” in Theorem 5 cannot be replaced
by the phrase “of positive measure”. The following theorem shows that, even for
functions f € MTNI, neither the word “residual” in Theorem 5 nor the second
occurrence of that word in Theorem 7 can be replaced by the phrase “of positive
measure” and that the first occurrence of the word “residual” in Theorem 7 cannot
be replaced by the phrase “full measure”.

Theorem 8. If M and N are first category subsets of [0,1] then there exists a
function f € MTNI, with Ry = [0, 1], such that

1. for every y € N, f~1(y) is finite and

2. for everyy € R, f~1(y) N M is finite.
Proof: Suppose M = My UMsU ... and N = N; UN> U ..., where each M; and
each N; is nowhere dense. Let g(z) = $(1++z — /1 —1z). g is a function from
[0,1] onto [0,1] for which ¢'(0) = ¢'(1) = 400 and ¢'(z) > % for every . Given an
interval [a, ], let a' = (2a 4+ b)/3 and ' = (a + 2b)/3. Then for numbers u and v,
define gupyuy as follows.

ut (v —u)g(5=

—a
I

=) fa<z<ad
Jabur(T) = v+ (u—v)g(&%) ifad <z <V

u—l—(v—u)g(”g_g,l) if ¥<z<b.

f is defined to be the uniform limit of the sequence {f,} of functions defined as
follows. Let fo = goi01 and let Dy = {0,1}. At stage n > 0 of the inductive process,
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let D,, be a Cantor set that includes the nowhere dense set D,,_1 U N, U f,,—1(M,,)
and is such that if (c,d) is an interval contiguous to D,_; then D, N]c,d] is a
Cantor set containing ¢ and d. To insure convergence, also make sure the length
of the largest interval contiguous to D, is less than 1/n. f, is defined to equal
fa—1 on Cp, = f, (D). For each interval (c,d) contiguous to D, f, 2, ((c,d)) is
the union of 3" disjoint intervals of equal length and if (a,b) is one of these, we
define f,, to be either gupcq Or gapae o0 (a,bd), depending on whether f,,_1(a) = c or
fn,l(a) =d.

If [u,v] is a subinterval of [0,1], there will exist an n and an interval (c,d) con-
tiguous to D, such that one of the components (a,b) of f='((c,d)) is a subset of
[u,v]. fpn is defined to be either gupea OF gapae On (a,b), and the values at the cusps
that occur at o’ and b’ are left unchanged in subsequent fi’s and the limit function
f will have Dini derivate values of +00 and —oo at these places. Therefore, it
follows from Proposition 1 of [6] that f € MTNI.

If y € N, there will be a least n such that y € Dy; then f~(y) = f ! (y) contains
at most 2 - 3" elements. On the other hand, if y € [0,1]\ (D1 U D> U ...) then
M N f~1(y) is empty. Thus, f has the desired properties. O

The following theorem shows that the requirement in Theorem 7 that E be resid-
ual in [0, 1] cannot be replaced with the weaker requirement that E be categorically
dense in [0,1] (i.e. that every open set intersecting [0,1] intersect E in a second
category set), even for functions f € MTNP.

Theorem 9. Let f € C be MNI (or just constant on no interval). Then there is
a categorically dense subset E of [0, 1] such that for everyy € Ry, |f~*(y)NE| = 1.

Proof: Let {Dy}a<2+ be a transfinite sequence enumerating the collection of al-
1 G5 subsets D of [0,1] such that for some subinterval I of [0,1], D is dense in
I. Note that for any such D and I, f(D) must be residual in the interval f(I)
by Lemma 2, and so |f(D)| = 2¥. Using transfinite induction, we may obtain a
sequence {yYq}a<oe of distinct y, such that for each a < 2%, y, € f(D,). Let
S =R\ {ya:a <2¥}. Let E be a set that contains exactly one member of
each set in the collection { f~!(ya) N Dy : e <2 }U{ f~1(y) : y € S}. For each
y € Ry, EN f~!(y) has exactly one member. That E is categorically dense in [0, 1]
follows from the fact that E intersects D, for every a < 2¥. O

Theorem 7 says that if E is a residual subset of [0,1] then for any f € MNI
(hence for the typical f € C), the set ENf~!(y) is large for the typical y € Ry. Our
next two theorems will show that E N f~!(y) is not closed for the typical y € Ry.
We will need the following lemma.

Lemma 4. Let I be a closed interval, let f be a continuous, real-valued function
defined on I that is monotone on no subinterval of I, and let f(I) = [a, B]. Let
W = {z € I : x is the least member of f~1(f(z))} and let H(I, f) = H be the
topological closure of W. Then
1. H(I, f) is a closed, nowhere dense subset of I,
2. for each y € [a, B8], H(I, f) contains either exactly one member or exactly two
members of f~1(y), and
3. for each y € (a, 3), H(I, f) contains a point of f~'(y) at which f|I does not
have a local extremum.
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Proof: To prove 1, we first note that H is closed. Now let J be a subinterval of
I. We will show that there is an open subinterval of J that does not intersect W
and therefore does not intersect H. Since f € M NI, J contains a and b such that
a < band f(a) < f(b). By making a larger if necessary, we can further require that
f(a) < f(z) for all € (a,b]. Similarly, we can find an interval (¢,d) C (a,b) such
that f(c) > f(z) for all z € (¢,d]. Since f((c,d)) C f((a,c)) and (a,c) is to the left
of (¢,d), we have that W N (¢, d) = 0.

To prove 2, let y € [a,3]. H contains the least member of f~!(y). Now as-
sume that H contains three members o < 1 < z2 of f~!(y); we will derive a
contradiction. Choose a € (g, 1) such that f(a) # y. Without loss of general-
ity, f(a) < y. Then zy < z; and f(z9) = f(z1), so z; ¢ W. Therefore, since
x1 € H, x; must be a limit point of W. So since x; € (a,z2) and f(x1) > f(a),
we can choose b € W N (a,z2) close enough to z; to make f(b) > f(a). If f(b) <y
then there would be z in [zg,a) (and therefore less than b) such that f(z) = f(b).
There cannot be such z since b € W; therefore, f(b) > y. Since f(z2) = y and
f(a) <y < f(b), by continuity of f at x5 we may obtain an open interval J disjoint
from (a,b) and containing z, such that for all z € J, f(a) < f(z) < f(b). Since
f(J) C f((a,b)) and (a,bd) is to the left of J, we have that JNW = ), contradicting
To € H.

To prove 3, let y € (a, B). Let [ be the least member of f~!(y). Then [ € W, so
I € H. If f|I does not have a local extremum at [ then we are done. Suppose f|I
has a local extremum at [. We may as well assume this is a local maximum. Then
fl@) <yforallz <lin I. Let I' =inf({x € I: f(x) >y}). Then I’ > 1. Since
f(z) <y forall z <" in I and since f is constant on no subinterval of I, I’ is a
limit point of {z € I : f(z) < y}. But I’ is also, by its definition, a limit point of
{z e€I: f(z) >y}. Therefore, f(I') =y and f|I does not have a local extremum
at I'. We will show that I’ is a limit point of W, whence I' € H. Let 6 > 0. Choose
z € [I',)l' + 6) NI such that f(z) > y. Then W N [I',l' + §) is nonempty since it
contains the least member of f~1(f(2)). O

Theorem 10. For every function f € M NI there exists a first category subset M
of [0,1] such that for everyy € Ry, M is dense in f~'(y), and for a residual set
of y € Ry, every point of M N f~(y) is a limit point of f~ (y) \ M.

Proof: Let f € MNI. Let S be the collection of all closed intervals [a,b] C [0, 1]
such that a and b are rational, and let M = |J,;.g H(I, f), where H(I, f) is defined
as in Lemma 4. By 1 of Lemma 4, H(I, f) is nowhere dense for each I € S. So since
S is countable, M is a first category subset of [0, 1]. From 2 of Lemma 4 and from the
fact that S is countable, it follows that for every y € Ry, M N f~1(y) is a countable
dense subset of f~1(y). By Theorem 6, the set B = {y : f 1(y) is perfect } is
residual in Ry. If y € B then since f~'(y) is perfect and M N f~!(y) is countable,
every point of M N f~1(y) is a limit point of f=1(y)\ M. O

Theorem 11. There is a residual subset A of C' such that for every function f € A
there ezists a nowhere dense, closed subset H of [0, 1] that contains a limit point of
f7*(y) \ H for each y in the interior of Ry.

Proof: In [2], Bruckner and Garg showed that there is a residual subset A of C
such that if f € A has minimum value a and maximum value 3 then f~'(a) and
f~1(B) each have only one member and for every y € (a, ), f~'(y) is either a
perfect set or the union of a perfect set with {z}, where z is a point at which f has
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a local extremum. Let f € A have minimum value & and maximum value 3. Define
H = H([0,1], f) as in Lemma 4. By that lemma, H is a nowhere dense, closed
subset of [0,1]. Let y be in («, 3), the interior of R;. By 3 of Lemma 4, H ([0, 1], f)
contains a point z of f~!(y) at which f does not have a local extremum. Because
f € A,  must be a limit point of f~!(y). By 2 of Lemma 4, H = H([0, 1], f)
contains at most two points of f~1(y); therefore, z is a limit point of f~!(y)\H. O

Although we were able to make the function f in Theorem 8 be MTNI, we
could not have made it be M N P, because of the following theorem, which gives
the analogs of Theorems 5, 6, and 7 that hold for functions that are M NP. The
statement that a function f is right oscillatory at x [2] means that for every § > 0,
there exist s and ¢ such that ¢ < s <t <z +6 and (f(s) — f(z)) (f(t) — f(z)) < 0.

Theorem 12. For every f € MNP,
1. f~Y(y) is uncountable for every y € (min f,maz f),
2. {y € Ry : f~'(y) is not perfect} is at most countable.

Proof: We first point out that if a < b and f(a) > y > f(b) then there exists
an z with a < ¢ < b and with f(z) = y and f right oscillatory at z. Just let
x =max{t: forall s witha <s <t, y<f(s)}. A similar z exists if f(a) < y <
70)

To prove 1, let min(f) < y < max(f). By the above observation, there is at least
one z € [0,1] such that f(z) =y and f is right oscillatory at z. Also by the above
observation we have that {¢ : f(t) = y and f is right oscillatory at ¢ } is dense in
itself. Since f~!(y) is closed, we have that f~!(y) is uncountable.

As might be expected, to prove 2, we let N be the set of y that are the ordinates
of strict local extrema of f. It is well known (see Chapter IX of [14]) that N is
countable. If y € Ry \ N it follows from 1 that f~'(y) is uncountable, and since
f € MNP, any isolated points of f~!(y) would have to occur at local extrema, but
those have been avoided. This proves 2. O

Corollary 3. No CBV function f is MNP.

Proof: It follows from the Banach Indicatrix Theorem (Theorem 6.4 of Chapter
IX of [14]) that if f is a BV function then {y € Ry : f~'(y) is finite } is of full
measure in Ry. If f were also M N P this would contradict part 1 of Theorem 12. [

Theorems 5 and 7 are statements about the intersections of functions in M NI
with constant functions. They yield similar statements, for every positive inte-
ger n, about the intersections of functions in MT NI with functions in the spaces
P C C™ C Lip" of polynomials of degree < n, of n-times continuously differen-
tiable functions, and of Lipschitz functions, respectively. We assume the following
standard norms for these spaces.

g€P": llgl=lg(0) +1g'(0)] + - +1g"™(0)]
geC™: gl =1g9(0) + -+ 19"V (O)] +sup{lg" (@) : 0 < = < 1}
g € Lip* : |lgll = |9(0)] +sup{ 1284 0 <z <y <1}
Let Z be one of these spaces. Note that the norm for Z takes the form ||g|jz =
l9°llo + |g(0)|, where g° denotes the function ¢°(t) = g(t) — g(0) and || - [|o is just

the norm || - || restricted to the subspace Zy = {h € Z : h(0) = 0}. For a given
f € C, let Uz(f) denote the “natural” open set in Z consisting of the functions
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g € Z satisfying min(f — g) < 0 < max(f — g). It follows from the above property
of the norm that Uz(f) is the interior of the set of functions in Z that intersect f.
If f and g are functions, we use the notation [f = g] for {z : f(x) = g(z) }.

Theorem 13. If f € MTNI, n is a positive integer, and Z is one of the spaces
Pn, O™, Lip*, then
1. B={g€ Z:[f =g]is perfect } is residual in Uz(f), and
2. for every residual E C[0,1], T={g € Z:[f =g]NE is c-dense in [f =g] }
is residual in Uz(f).

Proof: Let E be a residual subset of [0,1]. Let X = Z, and let ) be the space
of constant functions on [0,1] (identified with the space R). Since each function
in Z can be uniquely expressed as the sum of a function in X and a function in
Y, and since the norm for Z can be written as the sum of the two norms of these
two functions in these two subspaces of Z, we can identify Z with X x ). We
use the notation of §14 and §15 of [11]. It follows from Garg’s characterization of
the functions in MTNI (Proposition 1 of [6]) that the sum of any such function
and any Lip' function is still MTNI. Therefore, it follows from Theorems 6 and 7
that for every fixed g € X, the “vertical sections” B, = BN ({g} x V) and T, are
residual in the “vertical interval” Uz(f), (Theorem 2 of [7] is the P! case of this
fact for B). Thus, it will follow from the “partial converse of the Kuratowski-Ulam
Theorem” (Theorem 15.4 of [11]) that B and T are residual in Uz(f), provided
they have the Baire property.

Let C denote the hyperspace of closed subsets of [0,1] with the Hausdorff metric.
We use the notation and facts from §17 and §42 of [9]. A basic open set in C is of
the form

{XeC: XCUp& XNU; #0Vi=1...n}

where the U; are open in [0,1]. Tt is fairly easy to see that if U is open in [0,1], the
set {g€ Z:[f=9g]CU}isopenand theset {ge Z:[f=¢g]NU #0D}is an F,.
It follows that the mapping ¥ : Z — C defined by ¥(g) = [f = ¢] is of Borel class
1. The set G = { X € C: X is perfect } is a G5 set in C, so B =9 1(G) is an Fys
set in Z (proved for Z = P in [15]) and therefore has the Baire property. So 1 is
proved.

We now prove part 2. We assume without loss of generality that E is a dense
G subset of [0,1], and let

K = {geZ:[f=g]NnEisresidualin [f =g¢]} .

It follows from the proof of Theorem 7 that T'= K N B, so it will suffice to show
that K has the Baire property. Let {V;} be a countable base for [0,1] consisting
of relatively open intervals. First observe that since E is a G set and [f = g] is
closed for f and g in C,

K= {geZ:[f=g|nEisdensein [f=g]} so
K = U[{gEZ:[f:g]ﬁVi;é[iJ}ﬁ{gez:[f:g]ﬂViﬂE;é@}c].
i=1
The set {g € Z : [f = g|NV; # 0} is an F, set. Thus it is only necessary to
determine the nature of the sets of the foorm L = {g € Z : [f = g|NnH # 0},
where H is a G subset of [0,1]. The set D={X € C: XN H # ()} is an analytic
set in C, as is the set D x Z in the space C x Z. One can show that the set
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:{(X,g)erz:Xg[f:g]}isclosedinC><z,soN:Mm(sz) is
alytic in C x Z. The set L above is the projection of IV onto Z, so L is analytic.

It is now easy to check that K is analytic and hence has the Baire property so that

T = BN K is residual in Uz(f). O
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