A. J. Meir

Math-5630/6630

Introduction to Numerical Analysis I
Summer 2007
Homework 10

Problems

1. Do problem 2 on p. 532 of your textbook, repeat also for the backward Euler method.
2. Use Euler's method to solve:

$$
\begin{gather*}
y^{\prime}=y, \quad y(0)=1 \tag{a}\\
y^{\prime}=1+(y-t)^{2}, \quad y(0)=1
\end{gather*}
$$

Find $y(0.2)$ using $h=0.1$. Compare to the exact solutions which are $y=e^{t}$ and $y=t+\frac{1}{1-t}$, respectively.

Program

1. Program Euler's method.
2. Program Heun's method.
3. Program fourth order Runge-Kutta method.

Apply all methods, using $h=0.1$ to the equations:
$y^{\prime}(t)=y(t), \quad 0 \leq t \leq 3, \quad y(0)=1, \quad$ which has the exact solution $\quad y=e^{t}$.
$y^{\prime}(t)=y(t)-1, \quad 0 \leq t \leq 3, \quad y(0)=0, \quad$ which has the exact solution $\quad y=1-e^{t}$.
Format the output in a table with following headers:
t_{i} Euler Error Heun Error RK-4 Error
For the errors use the absolute value of the difference between the approximate solution and the exact solution.
Extra. Try to repeat the above using $h=0.1$ for the fourth order Runge-Kutta method, $h=0.05$ for Heun's method, and $h=0.025$ for Euler's method.

