A. J. Meir

Math-5630/6630 Introduction to Numerical Analysis I Summer 2007

Homework 10

Problems

1. Do problem 2 on p. 532 of your textbook, repeat also for the backward Euler method.

2. Use Euler's method to solve:

(a)
$$y' = y$$
, $y(0) = 1$.

(b)
$$y' = 1 + (y - t)^2$$
, $y(0) = 1$.

Find y(0.2) using h = 0.1. Compare to the exact solutions which are $y = e^t$ and $y = t + \frac{1}{1-t}$, respectively.

Program

1. Program Euler's method.

- 2. Program Heun's method.
- 3. Program fourth order Runge-Kutta method.

Apply all methods, using h = 0.1 to the equations:

 $y'(t) = y(t), \quad 0 \le t \le 3, \qquad y(0) = 1, \qquad \text{which has the exact solution} \quad y = e^t.$ $y'(t) = y(t) - 1, \quad 0 \le t \le 3, \qquad y(0) = 0, \qquad \text{which has the exact solution} \quad y = 1 - e^t.$

Format the output in a table with following headers:

 t_i Euler Error Heun Error RK-4 Error

For the errors use the absolute value of the difference between the approximate solution and the exact solution.

Extra. Try to repeat the above using h = 0.1 for the fourth order Runge-Kutta method, h = 0.05 for Heun's method, and h = 0.025 for Euler's method.