A. J. Meir

Math-5630/6630

Introduction to Numerical Analysis I
Summer 2007
Homework 7

Programs

1. Use Taylor's polynomials to derive the formula:

$$
f^{\prime}(x)=\frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}+O\left(h^{4}\right) .
$$

Programs

$$
\begin{gather*}
f^{\prime}(x)=\frac{f(x+h)-f(x)}{h} \tag{1}\\
f^{\prime}(x)=\frac{f(x)-f(x-h)}{h} \tag{2}\\
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h} \tag{3}\\
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \tag{4}
\end{gather*}
$$

1. Write a program that uses (3) and (4) to approximate $f^{\prime}(1)$ and $f^{\prime \prime}(1)$ for $f(x)=e^{x}$ and $h=1,2^{-1}, 2^{-2}, \ldots, 2^{-60}$ (if you can, also force single precision then you only need to go down to 2^{-30}). Format your output in columns as follows:
$h f^{\prime}$ error $f^{\prime \prime}$ error
Indicate the values of h that give the least error.
2. Write a program that uses (3) and (4) to approximate $f^{\prime}(1)$ and $f^{\prime \prime}(1)$ for $f(x)=e^{x}$ and $h=1,2^{-1}, 2^{-2}, \ldots, 2^{-60}$, but this time use (one step of) Richardson's extrapolation (if you can, also force single precision then you only need to go down to 2^{-30}). Format your output in columns as follows:
$h f^{\prime}$ error $f^{\prime \prime}$ error
Indicate the values of h that give the least error, compare to previous computation.

* Math 6630.

