A. J. Meir

Math-5630/6630

Introduction to Numerical Analysis I
Summer 2007
Homework 6

Data: Consider the function

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

and nodes

$$
\begin{gathered}
x_{0}=-3, \quad x_{1}=-2, \quad x_{2}=-1, \quad x_{3}=-0.5, \quad x_{4}=0 \\
x_{5}=0.5, \quad x_{6}=1, \quad x_{7}=2, \quad \text { and } \quad x_{8}=3
\end{gathered}
$$

Programs

1. Write a program to compute the Lagrange interpolating polynomial. Compute the Lagrange interpolating polynomial of order 2 (for x_{0}, x_{4}, x_{8}), of order 4 (for $x_{0}, x_{2}, x_{4}, x_{6}, x_{8}$), of order 6 (for $x_{0}, x_{1}, x_{2}, x_{4}, x_{6}, x_{7}, x_{8}$), and of order 8 (for $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$). Graph these polynomials and evaluate them at $x=0.75$.
2. Write a program to compute the interpolatory cubic spline (once you have set up the system of algebraic equations you may use Matlab built-in functions, e.g., mldivide, or \"backslash" to solve the system). Compute the cubic spline with 2 subintervals (for x_{0}, x_{4}, x_{8}), with 4 subintervals (for $x_{0}, x_{2}, x_{4}, x_{6}, x_{8}$), with 6 subintervals (for $x_{0}, x_{1}, x_{2}, x_{4}, x_{6}, x_{7}, x_{8}$), and of with 8 subintervals (for $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$). Compute the spline of your choice (natural, clamped, smooth, or not-a-knot) and state which boundary conditions you used. Graph these splines and evaluate them at $x=0.75$.
3. Compare the approximations you obtain in problem 1 and 2 to the exact function $f(x)=\frac{1}{1+25 x^{2}}$, in particular evaluate $f(0.75)$.

* Math 6630.

