## A. J. Meir

## Math-5630/6630

Introduction to Numerical Analysis I
Summer 2007
Homework 2

1. Use 2 digit rounding decimal arithmetic to compute the roots (using the quadratic formula) of the quadratic $x^{2}+10 x+4.75=0$. Compare to the exact roots and compute the absolute and relative errors.
2. Repeat the above but now compute the roots using the algorithm

$$
x_{1}=\frac{-b-\operatorname{sign}(b) \sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x_{2}=\frac{c / a}{x_{1}} .
$$

3. Show that $f(x)=x^{3}-x-1$ has exactly on root in the interval $[1,2]$ (see problem 4).
*4. Suppose $f$ is continuous on $[a, b]$ and that $f(a) f(b)<0$ prove that $f$ has at least one root in $[a, b]$. Assume that in addition $f$ is differentiable on $(a, b)$ and that the derivative is never 0 , show that then the root is unique.

## Program

1. Program the bisection algorithm (see Program 46, p. 252) with the following change: check that $f(a) f(b)<0$, and stop with an error message otherwise.
a. Use your program to find an approximate root of $f(x)=x^{3}-x-1$ in the interval $[1,2]$, which is within $10^{-6}$ of the exact root.
b. Use your program to find approximate roots of $f(x)=\left(2 x^{2}-3 x-2\right) /(x-1)$, which are within $10^{-6}$ of the exact roots. (there are two roots in $[-4,4]$ ).

* Math 6630.

