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Abstract

We present a novel approach to the mathematical analysis and computational
simulation of fully three-dimensional, nonlinear, viscous, incompressible MHD
flow in complex configurations involving several liquid and solid conductors.
Such configurations arise in numerous metallurgical processes. Employing the
current density rather than the magnetic field as the primary electromagnetic
variable, it is possible to avoid artificial or highly idealized boundary conditions
for electric and magnetic fields and to account exactly for the electromagnetic
interaction of the flow region with the surrounding space. In addition, the
approach lends itself naturally to finite-element based discretization techniques.
As an application, we simulate the stationary flow of an electrically conducting
fluid around a solid spherical particle of arbitrary conductivity, in the presence of
crossed uniform electric and magnetic fields, and compute the Lorentz, pressure,
and viscous forces exerted on the particle. This problem arises in connection
with the electromagnetic filtration (purification) of molten metals before the
casting stage.

1 This material is based upon work supported by the National Science Founda-
tion under Grants DMS-9404440 and DMS-9625096.
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Introduction

Numerous metallurgical processes are governed by MHD effects resulting from the
macroscopic interaction of liquid metals with applied or induced currents, electric and
magnetic fields. Frequently these effects are technologically exploited in order to drive
or to control the flow of metallic melts. Typical examples include the electromagnetic
stirring of molten metals before the casting stage [1]; electromagnetic turbulence con-
trol in induction furnaces [2]; electromagnetic damping of buoyancy-driven flow during
solidification [3]; and the electromagnetic shaping of ingots in continuous casting [4].
Another application, which has recently garnered much attention, is the electro-

magnetic filtration (purification) of metal alloys [5–7]. While classical methods for the
removal of impurities, such as gravity sedimentation/flotation or centrifugation, rely on
density differences between the unwanted inclusions and the metallic melt, electromag-
netic filtration techniques exploit conductivity differences between inclusions and melt.
If, for example, a steady, uniform current J0 is passed through the melt and crossed
with a steady, uniform magnetic field B0, then the resulting Lorentz forces will accelerate
an immersed particle (of electrical conductivity σp) relative to the surrounding fluid (of
electrical conductivity σf ) provided that σp 6= σf .
In the simplest case, if induction effects are negligible and the geometric configuration

is such that the presence of the inclusion does not distort the current stream lines and
the melt remains at rest, then the current density in the particle is σp/σfJ0, the resultant
force (per unit volume) experienced by the particle is (σp/σf−1)J0×B0, and the particle
will migrate in a direction perpendicular to both J0 and B0. In general, however, the
situation is much more complex: The presence of the inclusion will distort the current
stream lines, leading to rotational Lorentz forces that cannot be balanced by pressure
gradients only; as a consequence the melt will be set in motion. In addition, induction
effects may significantly alter the applied force field.
Successful industrial application of electromagnetic filtration techniques requires a

thorough qualitative and quantitative understanding of the underlying MHD phenom-
ena. Analytical and numerical models are needed to predict the current distribution, the
structure of the flow field, and the forces acting on immersed particles (Lorentz, pressure,
and viscous forces). Since the governing equations are genuinely nonlinear, explicit solu-
tions or asymptotic expansions are feasible only in idealized situations where symmetries
and/or asymptotic values of characteristic flow parameters (Reynolds number, Hartmann
number, etc.) effectively reduce the problem to a linear one. Much has been achieved
in this arena over the past decade. See, for example, [8–10] for detailed and insightful
theoretical investigations of MHD flow around solid cylindrical, liquid spherical, and solid
spherical inclusions, respectively, in the presence of crossed uniform electric and magnetic
fields. A different technique, employing alternating currents induced by a time-varying
magnetic field, is analyzed in [11].
While explicit solutions and asymptotic expansions in special situations have greatly

enhanced the theoretical understanding of electromagnetic filtration processes, the gen-
eral, nonlinear, fully three-dimensional case appears to be tractable only by way of direct
numerical simulation. The same goes without saying for numerous other MHD-dominated
metallurgical processes such as those mentioned at the beginning. Common features,
shared by all those processes, include complex, three-dimensional geometry and the non-
linear interaction of several subsystems. All are governed by the Navier-Stokes equa-
tions, posed in the regions occupied by electrically conducting fluids; Ohm’s law, valid
in the fluid regions as well as in immersed or adjacent solid conductors; and Maxwell’s
equations, which hold throughout space. At interfaces separating media with different
rheological and electromagnetic properties, flow velocities, current densities, and electric
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and magnetic fields will typically satisfy jump conditions or continuity relations rather
than standard-type boundary conditions.
In the sequel, we will outline a novel analytical and computational approach to the

MHD equations, which permits (at least in principle) the solution of a wide variety of
highly complex MHD flow problems involving several fluid or solid conductors in arbitrary
three-dimensional geometries. One key idea is to employ the current density (rather than
the magnetic field) as the primary electromagnetic variable. This allows us to avoid
artificial or highly idealized boundary conditions for the electric and magnetic fields and
to confine virtually all computations to the bounded region of space occupied by fluid
and solid conductors with unknown current distribution, while still accounting exactly for
the electromagnetic interaction of these conductors with the surrounding space. Similar
ideas have been exploited, both analytically and numerically, in [12–13], although in a
much less general setting.
As an application of the method, we describe a direct numerical simulation of fully

three-dimensional, nonlinear MHD flow around a solid spherical inclusion of arbitrary
conductivity in the presence of crossed uniform electric and magnetic fields (a problem
with direct bearing on the theory of electromagnetic filtration). We describe several com-
puter experiments that illustrate, despite their somewhat academic nature, the feasibility
of our approach in dealing with realistic MHD flow problems in metallurgy.

The MHD Equations: A General Framework

MHD-dominated processes in metallurgy typically involve a variety of conductors,
each of which is either a solid or a viscous, incompressible fluid. Let Ω denote the union of
all conducting regions, solid or fluid, where the current density J is unknown. In addition,
there may be external conductors carrying given, externally maintained currents Jext.
Let Ωf denote the subset of Ω occupied by conducting fluids, where both J and the flow
velocity u must be determined. Technically, both Ω and Ωf are assumed to be bounded,
open, generally disconnected subsets of R3, with sufficiently regular (at least Lipschitz
continuous) boundaries ∂Ω and ∂Ωf , respectively.
The motion of the fluids in Ωf is governed by the Navier-Stokes equations:

ρut − η∆u+ ρ(u · ∇)u+∇p− J×B = F0 and ∇ · u = 0 in Ωf . (1)

Here u and p denote the velocity field and scalar pressure, J and B the current density
and magnetic flux density, respectively. The term J×B represents the Lorentz force, the
right-hand side F0 is a given body force (such as gravity). The density ρ and viscosity
η are assumed to be constant in each of the fluids involved (that is, in each of the
connected components of Ωf ), but with possibly different values in different fluids (that
is, in different components of Ωf ). The equations (1) must be supplemented by suitable
boundary and initial conditions, for example,

u = g on ∂Ωf and u = u0 at t = 0,

where g and u0, respectively, denote a given boundary velocity, tangential to ∂Ωf , and a
given initial flow field in Ωf .

The current distribution in the entire region Ω is subject to Ohm’s law:

J = σ(E+ χfu×B) in Ω. (2)

Here E denotes the electric field, and χf is the characteristic function of the fluid region
Ωf (that is, χf = 1 in Ωf and χf = 0 everywhere else). The electrical conductivity σ
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is assumed to be constant in each of the conductors involved, but with possibly different
values in different conductors. (This assumption could be further relaxed to allow for
spatially inhomogeneous and anisotropic solid conductors, where σ would be a symmetric
and positive definite tensor function of position.) The total current distribution,

Jtot = J+ Jext =

{
J in Ω,
Jext in R

3 \ Ω,
(3)

which may include given, externally maintained currents Jext, must satisfy the continuity
equation

∇ · Jtot = 0 in R3. (4)

Note that in (3) we identify the vector fields J and Jext with their respective zero ex-
tensions to R3. Assuming Jext to be solenoidal in R

3 \ Ω, Equation (4), which must be
interpreted in the sense of distributions on R3, is equivalent with

∇ · J = 0 in Ω and J · n = Jext · n on ∂Ω, (5)

where n denotes the outward unit normal vector field on ∂Ω.
The key idea now is to “eliminate” the magnetic and electric fields B and E from

the equations. To that end, the magnetic field is decomposed as

B = Bext + B(Jtot) ,

where Bext denotes a given, externally generated field while B(Jtot) is the field induced
by Jtot. The latter satisfies Maxwell’s equations (in the quasi-stationary approximation
customarily adopted in MHD):

∇× µ−1B(Jtot) = Jtot and ∇ · B(Jtot) = 0 in R
3. (6)

The magnetic permeability µ is assumed to be constant in each of the media that con-
stitute the region Ω as well as in the exterior of Ω, but with possibly different values in
different media. The equations (6) are interpreted in the sense of distributions on R3; as
such they incorporate the jump conditions and continuity relations that B must satisfy
at interfaces separating media of different magnetic permeability.
Next, a magnetic vector potential

A = Aext +A(Jtot)

is introduced. Here Aext denotes a (given) solenoidal vector potential for Bext while
A(Jtot) is to be determined from

∇× µ−1∇×A(Jtot) = Jtot and ∇ · A(Jtot) = 0 in R3,

or equivalently (since ∇ · Jtot = 0) from

∇× µ−1∇×A(Jtot)−∇µ
−1∇ · A(Jtot) = Jtot in R

3. (7)

Under mild assumptions on Jtot, this equation admits a unique solution vanishing at
infinity. In fact, Equation (7) permits the consistent definition of vector fields A(K) and
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B(K) even for not necessarily solenoidal distributions K: Let A(K) denote the unique
solution of

∇× µ−1∇×A(K)−∇µ−1∇ · A(K) =K in R3 and A(K) = 0 at ∞

and set B(K) = ∇×A(K). Although neither J nor Jext are solenoidal as distributions on
R
3 (unless J ·n = Jext ·n = 0 on ∂Ω), the magnetic field can now be further decomposed
as

B = B0 + B(J) with B0 = Bext + B(Jext) . (8)

To obtain a similar decomposition for the electric field, the same is written as

E = Eext + E(B) ,

where Eext denotes a given, externally generated field while E(B) is the field induced by
the time variation of B. The latter obeys Faraday’s law:

∇× E(B) = −Bt in R
3.

Since B = ∇×A, there exists a scalar potential φ (on R3) such that E(B) +At = −∇φ,
and it follows that

E = E0 −A(Jt)−∇φ with E0 = Eext −Aext,t −A(Jext,t) . (9)

Substitution of (8) and (9) into Ohm’s law (2) yields

A(Jt) + σ
−1J+∇φ− χfu×

(
B0 + B(J)

)
= E0 in Ω.

The above constitutes an evolution equation for the unknown current density J, in which
the scalar potential φ plays the role of a Lagrangemultiplier associated with the divergence
constraint∇·J = 0, in complete analogy to the role of the pressure p in the Navier-Stokes
equations (1). A boundary condition for J is already contained in (5):

J · n = j on ∂Ω where j = Jext · n .

All that is needed to close the system of equations is an initial condition for J,

J = J0 at t = 0,

where J0 denotes a given initial current distribution in Ω.
In summary, the following initial-boundary value problem must be solved for the

velocity, pressure, current density, and electric potential:

ρut − η∆u+ ρ(u · ∇)u+∇p− J×
(
B0 + B(J)

)
= F0 and ∇ · u = 0 in Ωf , (10)

u = g on ∂Ωf and u = u0 at t = 0, (11)

A(Jt) + σ
−1J+∇φ− χfu×

(
B0 + B(J)

)
= E0 and ∇ · J = 0 in Ω, (12)

J · n = j on ∂Ω and J = J0 at t = 0, (13)

where B(J) = ∇×A(J) and

∇× µ−1∇×A(J)−∇µ−1∇ · A(J) = J in R3 and A(J) = 0 at ∞. (14)
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Note that if µ is constant throughout space, then (14) reduces to

−∆A(J) = µJ in R3 and A(J) = 0 at ∞,

in which case

A(J) =
µ

4π

∫
Ω

J(y)

|x− y|
dy

(the Newtonian potential of J) and

B(J) = −
µ

4π

∫
Ω

x− y

|x− y|3
× J(y) dy (15)

(the Biot-Savart formula for the magnetic field induced by J). In general, when integral
representations for A(J) and B(J) are unavailable or inconvenient, Equation (14) must
be solved simultaneously with (10)–(13).
It is worth recalling that in the above formulation of the MHD equations, Maxwell’s

equations are implicitly solved on all of space (except that an extra equation would
be needed to determine the electric potential φ in the exterior of Ω). In particular, no
boundary conditions are imposed on electric and magnetic fields, and the electromagnetic
interaction of the conductors in Ω with the surrounding space is fully accounted for.
Of course, it is possible and useful to generalize the boundary conditions in (11) and

(13). For example, one could specify the stress rather than the velocity on all or part
of ∂Ωf , or alternatively, normal velocity and tangential stress or tangential velocity and
normal stress. Also, one could specify the electric potential rather than the current flux
on all or part of ∂Ω. Under such generalized boundary conditions, however, the electro-
magnetic interaction between Ω and its exterior would be partially neglected. Suppose,
for example, that the electric potential is specified on parts of ∂Ω, modeling the presence
of electrodes by means of which a current is passed through the configuration. Obviously,
a supply current must be provided to the electrodes in order to maintain the specified
potential. The supply current induces magnetic field and, if time-dependent, also elec-
tric field; these fields could affect the velocity and current distribution everywhere in Ω.
Usually, the effect will be negligible; if it is not, the external wires carrying the supply
current should be considered part of Ω, the region of unknown current density.
For a detailed mathematical analysis of the initial-boundary value problem (10)–(14),

the reader is referred to a forthcoming publication, where the existence of weak solutions
is proved via the Faedo-Galerkin method; [12] deals with a special case. The paper [13]
is devoted to the numerical analysis and finite-element approximation of a stationary
MHD flow problem, under much less general assumptions but based on the same ideas.
There, the reader will find a weak formulation of the problem, suitable for finite-element
discretization, along with rigorous error estimates, remarks on a specific implementation
of the method, and a discussion of several computational experiments.

Application: Flow Around a Spherical Inclusion

Returning to the problem of electromagnetic filtration, as discussed in the introduc-
tion, we now consider the stationary flow of an electrically conducting fluid (of density ρ,
viscosity η, and conductivity σf ), confined to a cubic vessel Ω, around a solid spherical
particle Ωp (of conductivity σp), located at the center of Ω. In this case, Ωf = Ω \ Ωp
and σ = σf in Ωf , σ = σp in Ωp. Two opposite faces of the cube Ω are endowed with
electrodes, held at constant potentials φ+ and φ−, respectively, and a steady, uniform
magnetic field B0 is applied perpendicular to the ensuing electric field and current.
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No further external forcing is considered (F0 = 0, E0 = 0), and no external currents
are accounted for (Jext = 0). The boundary conditions are u = 0 on ∂Ωf and J ·n = 0 on
∂Ω, except on the two electrodes, where φ = φ±, respectively. The magnetic permeability
µ is assumed to be constant throughout space, so that the induced magnetic field B(J)
can be computed via the Biot-Savart formula (15). The problem being stationary, the
vector potential A(J) is not needed here.
To obtain a finite-element discretization of the problem, the flow domain Ωf (a cube

with a spherical cavity) is decomposed by first mapping it to a cube with a cubic cavity
and then decomposing the latter into cubes of equal size. The choice of finite elements
is the same as in [13]: continuous piecewise triquadratics for the velocity components
and the electric potential; continuous piecewise trilinears for the pressure; and gradients
of continuous piecewise triquadratics for the current density (the latter is a somewhat
nonstandard choice, dictated by a well-known stability condition). In view of the error
estimates in [13], the discretization error is expected to be of order h2 (where h is the
grid size).
The nonlinear system of algebraic equations resulting from the finite-element dis-

cretization is solved with a simple linearization/iteration scheme, in which the first vari-
able of the inertia term (u · ∇)u and the induced magnetic field B(J) are lagged behind.
At each step of the iteration, B(J) is computed via Gaussian quadrature of the Biot-
Savart integral (15). Since B(J) is lagged behind, the nonlocal nature of the operator B
does not destroy the sparsity of the resulting linear-algebraic systems. Those are solved
directly.
We simulated the flow in two typical albeit academic situations, with σp = 10σf and

σp = 0.1σf , respectively. All parameters (except for σp) were set equal to 1. The domain
Ω was a unit cube centered at the origin, Ωp a sphere of radius 0.1. The electrodes, located
at x = ±0.5, were held at potentials φ± = ±1, respectively, and the applied magnetic
field, in the z-direction, had magnitude 10. For both cases, σp = 10σf and σp = 0.1σf ,
Table 1 lists the computed Lorentz, pressure, viscous, and resultant forces acting on the
particle, that is, the x-, y-, and z-components of

FL =

∫
Ωp

J×B , FP = −

∫
∂Ωp

pn , FV = η

∫
∂Ωp

(
∇u+ (∇u)T

)
n ,

and
FR = FL + FP + FV .

σp FL FP FV FR

+3.679E−08 +1.605E−16 +2.150E−07 +2.518E−07
10σf +2.007E−01 −7.880E−02 −2.922E−03 +1.190E−01

+3.518E−04 −1.422E−05 −1.318E−05 +3.244E−04

+3.630E−09 +1.613E−16 +2.339E−07 +2.339E−07
0.1σf +1.556E−02 −5.497E−02 +2.501E−03 −3.691E−02

+8.298E−06 −2.586E−05 −3.084E−06 −2.065E−05

Table 1. Forces on Particle.

As expected, FL acts mostly along the positive y-axis, FP along the negative y-axis;
FV is also strongest in the y-direction, but generally small compared to FL and FP .
The resultant force FR would cause the particle to migrate in the positive y-direction if
σp = 10σf , in the negative y-direction if σp = 0.1σf . Figures 1 and 2 (at the end of the
paper) depict the current distribution and induced flow field in the case σp = 10σf .
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To illustrate the relative importance of induction effects, we repeated both simu-
lations, this time neglecting the induced magnetic field B(J) (this is easily achieved by
setting µ = 0). The resulting current distributions and flow fields were practically indis-
tinguishable from those obtained earlier, and so were the (relatively large) y-components
of the forces experienced by the particle. Noticeable deviations were observed only in the
(relatively small) x- and z-components of the forces (see Table 2). This is in line with ex-
pectations since the applied magnetic field was roughly one order of magnitude stronger
than the induced field. — More systematic flow simulations, involving metallurgically
realistic flow parameters and data, are under way and will be discussed elsewhere.

σp FL FP FV FR

+3.499E−08 +1.613E−16 +1.925E−07 +2.275E−07
10σf +2.007E−01 −7.879E−02 −2.921E−03 +1.190E−01

+0.000E−00 −9.051E−06 +2.747E−07 −8.776E−06

+3.392E−09 +6.465E−07 +2.172E−07 +8.637E−07
0.1σf +1.556E−02 −5.497E−02 +2.501E−03 −3.691E−02

+0.000E−00 +7.111E−06 +8.527E−08 +7.196E−06

Table 2. Forces on Particle, with Induction Effects Neglected.
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Figure 1. Current Distribution for σp = 10σf .
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Figure 2. Velocity Field for σp = 10σf .


