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Abstract. We are concerned with the steady flow of a conducting fluid, confined to a bounded
region of space and driven by a combination of body forces, externally generated magnetic fields,
and currents entering and leaving the fluid through electrodes attached to the surface. The flow
is governed by the Navier–Stokes equations (in the fluid region) and Maxwell’s equations (in all of
space), coupled via Ohm’s law and the Lorentz force. By means of the Biot–Savart law, we reduce the
problem to a system of integro-differential equations in the fluid region, derive a mixed variational
formulation, and prove its well-posedness under a small-data assumption. We then study the finite-
element approximation of solutions (in the case of unique solvability) and establish optimal-order
error estimates. Finally, an implementation of the method is described and illustrated with the
results of some numerical experiments.
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Introduction. Magnetohydrodynamics (MHD) is the theory of the macroscopic
interaction of electrically conducting fluids and electromagnetic fields. Applications
arise in astronomy and geophysics as well as in connection with numerous engineering
problems, such as liquid-metal cooling of nuclear reactors, electromagnetic casting of
metals, MHD power generation, and MHD ion propulsion. We refer to [8] or [20] for
general information and to [12] for more specific references.

Assuming the fluid to be incompressible, viscous, and finitely conducting, MHD
flow is governed by the Navier–Stokes and pre-Maxwell equations, coupled via Ohm’s
law and the Lorentz force (see, for example, [20, Chapter 2]). While the fluid may be
confined to a bounded region of space, it typically interacts with the outside world
(in particular, with current-carrying external conductors) through the universal elec-
tromagnetic field. This interaction entails formidable difficulties in the mathematical
analysis and numerical solution of realistic MHD flow problems. In particular, while
the Navier–Stokes equations are posed in the body of conducting fluid, Maxwell’s
equations need to be solved in all of space, and interior and exterior fields must be
suitably matched at the interfaces separating media with different electromagnetic
properties.

Only in special circumstances, most notably if the fluid is confined by perfectly
conducting walls, can attention be restricted to the fluid region itself. A fair amount of
mathematical work has been devoted to this case, that is, the case of MHD flow with
“ideal” boundaries (see, for example, [4, 9, 10, 19, 24] for general results regarding
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the existence, uniqueness, regularity, and asymptotic behavior of solutions and [7] for
a finite-element analysis). Only a few authors have dealt with more general scenarios,
involving “nonideal” boundaries (see [9, 10, 16, 17, 21]). Our earlier paper [12] contains
a detailed discussion of the relevant mathematical literature and many additional
references.

Of course, the physics and engineering literature abounds with experimental stud-
ies, asymptotic analyses, and computational simulations of a wide spectrum of MHD-
dominated processes. Computer codes have been developed and applied to the solu-
tion of industrial-strength MHD flow problems, but the rigorous numerical analysis of
such problems, which usually involve several fluid and solid conductors, complicated
geometries, and, frequently, free surfaces, is still largely terra incognita (see [1, 13, 14]
for a case study in a typical situation).

Our own approach to MHD flow with nonideal boundaries is based on the observa-
tion that the unknown magnetic field can frequently be eliminated from the equations
by means of the Biot–Savart law, thereby reducing the problem to a system of integro-
differential equations (for the velocity, pressure, current density, and electric potential)
in the fluid region. As discussed in [11] and [12, Section 5], this “velocity-current for-
mulation” avoids some of the difficulties inherent in the traditional formulation of the
MHD equations.

Here, we exploit the velocity-current formulation for the analysis and numerical
approximation of a simple, yet typical model problem: the steady flow of a conduct-
ing fluid, confined to a bounded region of space and driven by a combination of body
forces, externally generated magnetic fields, and currents entering and leaving the
fluid through electrodes attached to the surface. A precise statement of the problem
is given in section 1. In section 2 we derive a mixed variational formulation of the
problem and prove its well-posedness for small data; this extends earlier results in
[11]. Section 3, the central part of the paper, is devoted to the finite-element approx-
imation of solutions in the case of unique solvability. Optimal-order error estimates
are established under quite general assumptions on the discretization. Finally, in sec-
tion 4, we describe an implementation of the method and report on some numerical
experiments.

1. The problem. We are concerned with the stationary flow of a viscous, incom-
pressible, electrically conducting fluid, confined to a region Ω (a bounded Lipschitz
domain in R3), in the presence of various body forces, electric and magnetic fields, and
electric currents. Assuming all external field sources (if any) to be known, the flow
can be completely described in terms of the following unknown quantities: the fluid
velocity u and pressure p, the current density J in the fluid, the electric potential φ,
and the magnetic field B. The governing equations are the Navier–Stokes equations
and Ohm’s law,

−η∆u + ρ(u · ∇)u +∇p− J×B = F(1.1)

and

σ−1J +∇φ− u×B = E,(1.2)

along with the continuity equations

∇ · u = 0 and ∇ · J = 0,(1.3)

reflecting the conservation of mass and charge. The viscosity η, density ρ, and conduc-
tivity σ of the fluid are positive parameters; F is a given body force, and E represents
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a given, externally generated electric field. (Physically, E should be assumed to be
irrotational and could then be absorbed into the potential gradient, but we allow an
arbitrary field E, for reasons of symmetry in the equations.)

The magnetic field B can be written as

B = B0 + B(J),(1.4)

where B0 comprises field components generated by known external sources (perma-
nent magnets or electric currents flowing in circuits outside the fluid), while B(J) is
induced by the unknown current J in the fluid. Under mild assumptions on J, the
Biot–Savart law implies that

B(J)(x) = − µ

4π

∫
Ω

x− y
|x− y|3 × J(y) dy,(1.5)

for x ∈ R3, where µ is the magnetic permeability. (For simplicity we assume the fluid,
as well as any materials outside, to be nonmagnetic, so that µ is constant throughout
space.)

Equations (1.1)–(1.3) need to be supplemented by suitable boundary conditions
for u and J on the boundary Γ of the region Ω occupied by the fluid; in the simplest
case, u = 0 and J · n = 0, where n denotes the outward-pointing unit normal vector
field on Γ. Here we allow the fluid to be mechanically driven through boundary
forcing; this leads to a nonhomogeneous Dirichlet boundary condition,

u = g on Γ,

where g must satisfy
∫

Γ
g ·n = 0 (since ∇·u = 0 in Ω). We also allow electric current

to enter and leave Ω through the boundary. Obviously the current loop must then
be closed in the exterior of Ω; that is, we must have an external current distribution
Jext in R3 \ Ω such that

J · n = Jext · n on Γ.

Of course, Jext should satisfy ∇·Jext = 0 in R3 \Ω and
∫

Γ
Jext ·n = 0 (since ∇·J = 0

in Ω). Given Jext, the magnetic field B0 (generated by sources outside the fluid) can
be written as

B0(x) = Bext(x)− µ

4π

∫
R3\Ω

x− y
|x− y|3 × Jext(y) dy,(1.6)

for x ∈ R3, where Bext comprises field components generated by external sources
other than Jext (if any). The field Bext is assumed to be given with ∇ ·Bext = 0 in
R3 and ∇×Bext = 0 in Ω.

The current Jext should be thought of as flowing in an external conductor, con-
nected to Ω through two or more electrodes. It could be generated by a voltage
source, somewhere in the external circuit, for the purpose of driving the fluid in Ω
(this is the principle of an MHD propulsion device). To prescribe Jext amounts to
the assumption that the voltage source is adjustable (or that there is an adjustable
resistor in the external circuit), so that a specified external current can be maintained
no matter what the fluid’s response. For practical purposes, it would be more feasible
to prescribe only the potential difference generated at the voltage source (and the
resistance of the external circuit) and to treat Jext as an additional unknown. This
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obviously more complicated situation will be the subject of future investigation. For
now, we will concern ourselves with the following problem.

Problem P0. Given parameters η, ρ, σ, µ > 0 and data

F ∈ H−1(Ω), E ∈ L2(Ω),

g ∈ H1/2(Γ) with
∫

Γ
g · n = 0,

Jext ∈ L2(R3 \ Ω) with ∇ · Jext = 0 in R3 \ Ω and
∫

Γ
Jext · n = 0,

Bext ∈W1(R3) with ∇ ·Bext = 0 in R3 and ∇×Bext = 0 in Ω,

find functions

u ∈ H1(Ω) with ∇ · u = 0 in Ω and u = g on Γ,
J ∈ L2(Ω) with ∇ · J = 0 in Ω and J · n = Jext · n on Γ,
p ∈ L2(Ω)/R, φ ∈ H1(Ω)/R,

such that (1.1) and (1.2) are satisfied, with B given by (1.4), (1.5), and (1.6).

Here and in what follows, L2 and H1 denote the usual Lebesgue and Sobo-
lev spaces of square-integrable functions on the respective domains (that is, on Ω,
R3 \ Ω, or R3); W 1(R3) is the completion of H1(R3) with respect to the norm
f 7→ ‖∇f‖L2(R3). We think of H−1(Ω) as the norm dual of H1

0 (Ω), which is the sub-
space of H1(Ω) comprised of the functions that vanish on Γ (in the sense of traces).
Finally, H1/2(Γ) denotes the trace space of H1(Ω), endowed with the usual infimum
norm, and H−1/2(Γ) is the norm dual of H1/2(Γ). Throughout, boldface type indi-
cates a space of R3-valued functions, so that, for example, L2(Ω) = (L2(Ω))3.

The spaces in Problem P0 have been chosen so that all the equations and boundary
conditions are meaningful and the singular integrals in the decomposition of B are
well defined. Note that if we define J̃ ∈ L2(R3) to coincide with J in Ω and with
Jext in R3 \ Ω, then ∇ · J̃ = 0 (in the sense of distributions on R3), and we have
B = Bext + B̃ with B̃ given by

B̃(x) = − µ

4π

∫
R3

x− y
|x− y|3 × J̃(y) dy,

for x ∈ R3. The latter is the unique solution, in W1(R3), of Maxwell’s equations,

∇ · B̃ = 0 and ∇× B̃ = µJ̃(1.7)

(see [12, Section 2]). For simplicity, we require that Bext belongs to W1(R3) as well
(although the only technical condition on Bext needed later is that its restriction to
Ω belongs to L3(Ω)).

2. Weak formulation and well-posedness. Deriving a weak formulation of
Problem P0 and proving its well-posedness (for small data) is fairly straightforward,
following the reasoning in [11] with appropriate modifications. Unfortunately, we have
to introduce a considerable amount of notation in order to state our results and to
set the stage for the subsequent numerical analysis of the problem.

To begin, let us define

Y1 := H1(Ω), Y2 := L2(Ω), Y := Y1 ×Y2,

X1 := H1
0(Ω), X2 := L2(Ω), X := X1 ×X2
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and

M1 := L2(Ω)/R, M2 := H1(Ω)/R, M := M1 ×M2.

All these spaces are understood to be endowed with their natural Hilbert-space
structures, inherited from L2(Ω) and H1(Ω).

For all of the following, we fix a set of parameters η, ρ, σ, µ and a set of data F,
E, g, Jext, Bext as in Problem P0. For notational convenience, we define

j := Jext · n.

Furthermore, we let B : L2(Ω) → W1(R3) denote the bounded linear operator (see
[12, Section 2]) given by

B(f)(x) := − µ

4π

∫
Ω

x− y
|x− y|3 × f(y) dy,

for x ∈ R3 and f ∈ L2(Ω), and define B0 as in (1.6). Finally, let P denote the
orthogonal projection in L2(Ω) given by

P(f) := f − 1

|Ω|
∫

Ω

f.

Multiplying the equations in (1.1)–(1.3) by test functions v ∈ X1, K ∈ X2,
q ∈M1, and ψ ∈M2, respectively, then integrating over Ω and regrouping terms, we
obtain two variational equations of the form

a0

(
(u,J), (v,K)

)
+ a1

(
(u,J), (u,J), (v,K)

)
(2.1)

+ b
(
(v,K), (p, φ)

)
=

∫
Ω

F · v +

∫
Ω

E ·K

and

b
(
(u,J), (q, ψ)

)
=

∫
Γ

j ψ,(2.2)

where a0 : Y×Y → R (a bilinear form), a1 : Y×Y×Y → R (a trilinear form), and
b : Y ×M → R (a bilinear form) are given by

a0

(
(v1,K1), (v2,K2)

)
:= η

∫
Ω

(∇v1) : (∇v2) + σ−1

∫
Ω

K1 ·K2

+

∫
Ω

((
K2 ×B0

) · v1 −
(
K1 ×B0

) · v2

)
,

a1

(
(v1,K1), (v2,K2), (v3,K3)

)
:=

ρ

2

∫
Ω

((
(v1 · ∇)v2

) · v3 −
(
(v1 · ∇)v3

) · v2

)
+

∫
Ω

((
K3 × B(K1)

) · v2 −
(
K2 × B(K1)

) · v3

)
,

and

b
(
(v,K), (q, ψ)

)
:= −

∫
Ω

(∇ · v)P(q) +

∫
Ω

K · (∇ψ).
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Remark 2.1. (a) The first integral on the right-hand side of (2.1) and the integral
on the right-hand side of (2.2) are understood in the sense of duality pairings, between
H−1(Ω) and H1

0(Ω) and between H−1/2(Γ) and H1/2(Γ), respectively.
(b) For reasons that will become clear in section 3, the term in a1 that stems from

the inertial force in (1.1) has been “skew-symmetrized.” Note that

1

2

∫
Ω

((
(v1 · ∇)v2

) · v3 −
(
(v1 · ∇)v3

) · v2

)
=

∫
Ω

(
(v1 · ∇)v2

) · v3

whenever ∇ · v1 = 0 and v3|Γ = 0. The advantage of defining a1 in this way is that
for every (v0,K0) ∈ Y, the bilinear form a1

(
(v0,K0), (·, ·), (·, ·)) is skew-symmetric

on Y ×Y.
(c) The projection P has been inserted in the definition of the form b so that b is

well defined on Y×M , independent of the choice of representatives for the equivalence
classes in M1 = L2(Ω)/R and M2 = H1(Ω)/R. In (2.1) and (2.2), this projection has
no effect at all since∫

Ω

(∇ · v)P(q) =

∫
Ω

(∇ · v)q − 1

|Ω|
(∫

Γ

v · n
)(∫

Ω

q
)

and
∫

Γ
v · n = 0 if ∇ · v = 0 or v|Γ = 0. In dealing with the discretized equations

of section 3, the presence of P will allow us to work with approximate boundary
values for the fluid velocity that do not have to satisfy a compatibility condition (see
section 4 for details).

Routine arguments show that the original problem P0 is equivalent to the following
variational version.

Problem P1. Find (u,J) ∈ Y with u|Γ = g and (p, φ) ∈ M such that (2.1) and
(2.2) are satisfied for all (v,K) ∈ X and (q, ψ) ∈M , respectively.

It should be noted that while we have to enforce the Dirichlet boundary condition
on u, the boundary condition on J is a natural one. In fact, J ∈ L2(Ω) satisfies∫

Ω

J · (∇ψ) =

∫
Γ

j ψ ∀ψ ∈M2

if and only if

∇ · J = 0 in Ω and J · n = j on Γ.

In the following lemma, we gather the properties of the forms a0, a1, and b that
will be needed in the subsequent analysis of Problem P1. Here and in what follows, c
denotes a fixed constant depending only on the domain Ω.

Lemma 2.2. (a) The forms a0, a1, and b are bounded on Y ×Y, Y ×Y ×Y,
and Y ×M, respectively, with norms

‖a0‖ ≤ cmax{1, η, σ−1, µ}(1 + ‖Jext‖L2(R3\Ω) + ‖Bext|Ω‖L3(Ω)),

‖a1‖ ≤ cmax{ρ, µ}, and ‖b‖ ≤
√

3.

(b) The form a0 is positive definite on X × X; more precisely, there exists a
number α ≥ c−1 min{η, σ−1} such that

a0((v,K), (v,K)) ≥ α‖(v,K)‖2Y ∀ (v,K) ∈ X.(2.3)
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(c) The form b satisfies the Ladyzhenskaya–Babuska–Brezzi condition (LBB-condi-
tion) on X ×M ; that is, there exists a number β > 0 (depending only on Ω) such
that

inf
(q,ψ)∈M

sup
(v,K)∈X

b
(
(v,K), (q, ψ)

)
‖(v,K)‖Y‖(q, ψ)‖M ≥ β.

Proof. Part (a) follows from elementary estimates, using the boundedness of the
operator B : L2(Ω)→W1(R3) and the continuity of the embeddings of W1(R3) into
H1

loc(R3) and of H1(Ω) into L6(Ω). Part (b) is an immediate consequence
of Poincaré’s inequality. The LBB-condition in (c) is equivalent to the invertibility
of the gradient operator as a mapping from M1 = L2(Ω)/R into X∗1 = H−1(Ω) (see
[5, Corollary I.2.4]) and from M2 = H1(Ω)/R into X∗2 = L2(Ω) (see [5, Theorem
I.1.9]).

To further reduce Problem P1, we write

u = u0 + û and J = J0 + Ĵ,

where u0 ∈ H1(Ω) and J0 ∈ L2(Ω) are chosen so that

∇ · u0 = 0 in Ω, u0 = g on Γ and ∇ · J0 = 0 in Ω, J0 · n = j on Γ.(2.4)

The existence of u0 and J0 follows from the LBB-condition, Lemma 2.2(c). Since this
fact (and its proof) will be very important in section 3, we briefly recall the argument.
Note that thanks to the LBB-condition, the operator B : X→M∗, defined by

B(v,K) := b
(
(v,K), (·, ·)),

for (v,K) ∈ X, is onto and restricts to an isomorphism between V⊥ and M∗, where
V⊥ denotes the orthogonal complement (in X) of the space

V := {(v,K) ∈ X; b((v,K), (q, ψ)) = 0 ∀ (q, ψ) ∈M}.(2.5)

Moreover,

‖B(v,K)‖M∗ ≥ β ‖(v,K)‖Y ∀ (v,K) ∈ V⊥,

where β is the constant in the LBB-condition (see [5, Lemma I.4.1]). This means
that the Moore–Penrose pseudoinverse of B, that is, the operator B+ : M∗ → X that
assigns to every ϕ ∈M∗ the unique element (v,K) ∈ V⊥ with B(v,K) = ϕ, satisfies
‖B+‖ ≤ β−1.

Now let Λ : H1/2(Γ)→ H1(Ω) denote a bounded linear lifting operator, say, the
Moore–Penrose pseudoinverse of the trace operator v 7→ v|Γ (in which case ‖Λ‖ = 1).
Given boundary data g ∈ H1/2(Γ) and j = Jext · n ∈ H−1/2(Γ), define ϕ(g, j) ∈ M∗
by

ϕ(g, j)(q, ψ) :=

∫
Γ

j ψ − b((Λg, 0), (q, ψ)
)
,

for (q, ψ) ∈M , and let

(u0,J0) := (Λg, 0) +B+
(
ϕ(g, j)

)
.
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By construction, (u0,J0) ∈ Y, u0|Γ = g, and b
(
(u0,J0), (q, ψ)

)
=
∫

Γ
j ψ for all (q, ψ) ∈

M . That is, (u0,J0) satisfies (2.4), as required. Moreover,

‖(u0,J0)‖Y ≤ λ ‖(g, j)‖H1/2(Γ)×H−1/2(Γ),(2.6)

with a constant λ depending only on Ω (for example, λ = 1 +
√

3β−1 if ‖Λ‖ = 1).
Substituting u = u0 +û and J = J0 +Ĵ in (2.1) and (2.2), we obtain an equivalent

pair of equations of the form

a
(
(û, Ĵ), (û, Ĵ), (v,K)

)
+ b
(
(v,K), (p, φ)

)
= `(v,K)

and

b
(
(û, Ĵ), (q, ψ)

)
= 0,

where a : X×X×X→ R and ` ∈ X∗ are defined by

a
(
(v1,K1), (v2,K2), (v3,K3)

)
:=a0

(
(v2,K2), (v3,K3)

)
+ a1

(
(v1,K1), (v2,K2), (v3,K3)

)
+ a1

(
(v2,K2), (u0,J0), (v3,K3)

)
+ a1

(
(u0,J0), (v2,K2), (v3,K3)

)(2.7)

and

`(v,K) :=

∫
Ω

F · v +

∫
Ω

E ·K
−a0

(
(u0,J0), (v,K)

)− a1

(
(u0,J0), (u0,J0), (v,K)

)
.

(2.8)

After this reduction, the problem at hand fits into a nonlinear version of the
classical Ladyzhenskaya–Babuska–Brezzi theory (see, for example, [5, Chapter IV.1]).
Moreover, Problem P1 is equivalent to the following variational problem in the space
V, defined in (2.5).

Problem P2. Find (û, Ĵ) ∈ V such that a
(
(û, Ĵ), (û, Ĵ), (v,K)

)
= `(v,K) for all

(v,K) ∈ V.
In fact, if (u,J, p, φ) is a solution of P1, then (u − u0,J − J0) solves P2, and

if (û, Ĵ) is a solution of P2, then there exists a unique pair (p, φ) ∈ M such that
(u0 + û,J0 + Ĵ, p, φ) solves P1 (see [5, Chapter IV.1, Theorem 1.4]).

To infer the well-posedness (for small data) of Problem P2, we need only verify
certain continuity and coercivity properties of the form a.

Lemma 2.3. (a) The mapping (v,K) 7→ a
(
(v,K), (v,K), (v0,K0)

)
, for any

(v0,K0) ∈ V, is weakly sequentially continuous on V.
(b) For every (v0,K0) ∈ V and all (v,K) ∈ V, we have

a
(
(v0,K0), (v,K), (v,K)

) ≥ (α− λ‖a1‖‖(g, j)‖
)
‖(v,K)‖2Y,

where α and λ are the constants in (2.3) and (2.6), respectively, ‖a1‖ is the norm of
the trilinear form a1, and ‖(g, j)‖ denotes the norm of (g, j) in H1/2(Γ)×H−1/2(Γ).

(c) The mapping (v0,K0) 7→ a
(
(v0,K0), (·, ·), (·, ·)) is uniformly Lipschitz contin-

uous, with Lipschitz constant ‖a1‖, from V into the space L(V,V∗) of bounded linear
operators from V into V∗.

Proof. Part (a) is readily checked, recalling the boundedness of B as a mapping
from L2(Ω) into W1(R3), the continuous embedding of W1(R3) into H1

loc(R3), and
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the compact embedding of H1(Ω) into L4(Ω). Part (b) follows from (2.3) and (2.6),
observing the skew-symmetry of the form a1 with respect to its second and third
arguments (see Remark 2.1(b)), while (c) is an immediate consequence of the definition
of a and the boundedness of a1.

The above and [5, Chapter IV, Theorems 1.2 and 1.3] yield the following existence
and uniqueness result.

Theorem 2.4. Let N = N(F,E,g,Jext,Bext) denote the norm of the functional
`|V. Let ‖(g, j)‖ denote the norm of (g, j) in H1/2(Γ)×H−1/2(Γ), where j = Jext ·n,
and choose constants α and λ as in (2.3) and (2.6).

(a) If ‖(g, j)‖ < α
λ‖a1‖ , then there exists at least one solution (û, Ĵ) of Problem P2

that satisfies

‖(û, Ĵ)‖Y ≤ N

α− λ‖a1‖‖(g, j)‖ .

(b) If ‖(g, j)‖ < α
λ‖a1‖ and N < 1

‖a1‖
(
α − λ‖a1‖‖(g, j)‖

)2
, then the solution of

Problem P2 is unique.
Remark 2.5. (a) The quantity N = N(F,E,g,Jext,Bext) measures the size of

the data F, E, g, Jext, Bext; in fact, we have

N ≤ ‖F‖H−1(Ω) + ‖E‖L2(Ω) + cmax{1, η, ρ, σ−1, µ}
(
‖g‖H1/2(Γ) + ‖Jext‖L2(R3\Ω)

)
(

1 + ‖g‖H1/2(Γ) + ‖Jext‖L2(R3\Ω) + ‖Bext|Ω‖L3(Ω)

)
.

Theorem 2.4 thus asserts the existence of a solution of Problem P2 and, consequently,
of Problems P1 and P0 if the boundary data g and j = Jext · n are sufficiently small;
uniqueness is guaranteed if all the data, F, E, g, Jext, and Bext, are sufficiently small.
(Note that the constants α, λ, and ‖a1‖ are independent of the data.)

While it seems natural that uniqueness holds only for small data, it is somewhat
disturbing that the existence of a solution should require small boundary data. No
such assumption is needed in the case of the Navier–Stokes equations, but there the
proof of existence relies on the construction (due to E. Hopf) of a special lifting of the
boundary values of the fluid velocity (see, for example, [5, Chapter IV.2, Lemma 2.3]).
Hopf’s device does not seem to work for the MHD equations, due to the presence of
additional nonlinear terms. However, for the purposes of the present paper, this
issue is of minor importance since the subsequent finite-element analysis is anyway
restricted to the case of unique solvability.

(b) The smallness assumptions of Theorem 2.4 must be interpreted relative to the
parameters of the problem. For example, given any data set (F,E,g,Jext,Bext), the
assumptions of Theorem 2.4(b) are satisfied and the problem has a unique solution
provided that the viscosity η and resistivity σ−1 of the fluid are sufficiently large.
(Note that according to Lemma 2.2(a), α ≥ c−1 min{η, σ−1} and ‖a1‖ ≤ cmax{ρ, µ},
while λ depends only on Ω.)

(c) Under the conditions of Theorem 2.4(b), the unique solution (û, Ĵ) of Prob-
lem P2 satisfies

‖(û, Ĵ)‖Y ≤ N

α− λ‖a1‖‖(g, j)‖ <
α− λ‖a1‖‖(g, j)‖

‖a1‖ =
α

‖a1‖ − λ‖(g, j)‖.

For the corresponding unique solution (u,J, p, φ) of Problem P1 this implies

‖(u,J)‖Y ≤ ‖(u0,J0)‖Y + ‖(û, Ĵ)‖Y <
α

‖a1‖ .
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Conversely, if Problem P1 has a solution (u,J, p, φ) with ‖(u,J)‖Y < α/‖a1‖, then
the solution is necessarily unique. To prove this, suppose that both (u,J, p, φ) and
(ũ, J̃, p̃, φ̃) are solutions of P1 and that ‖(u,J)‖Y < α/‖a1‖. Then we have

a0

(
(u− ũ,J− J̃), (v,K)

)
+ a1

(
(u− ũ,J− J̃), (u,J), (v,K)

)
+ a1

(
(ũ, J̃), (u− ũ,J− J̃), (v,K)

)
+ b
(
(v,K), (p− p̃, φ− φ̃)

)
= 0

for all (v,K) ∈ X and

b
(
(u− ũ,J− J̃), (q, ψ)

)
= 0

for all (q, ψ) ∈M . In particular, (u− ũ,J− J̃) ∈ V and therefore

a0

(
(u− ũ,J− J̃), (u− ũ,J− J̃)

)
+ a1

(
(u− ũ,J− J̃), (u,J), (u− ũ,J− J̃)

)
= 0.

Thanks to (2.3), this implies

0 ≥ (α− ‖a1‖‖(u,J)‖Y
)‖(u− ũ,J− J̃)‖2Y,

and since α− ‖a1‖‖(u,J)‖Y > 0 (by assumption), we conclude that (u,J) = (ũ, J̃).

(d) A generalization of the above estimate shows that in the regime of unique
solvability, the solution of Problem P1 depends Lipschitz continuously on the data F,
E, g, Jext, and Bext.

3. Finite-dimensional approximation. Let B denote a Banach space and
(Bh)h∈I a family of finite-dimensional subspaces of B, where I is a subset of the in-
terval (0, 1) having 0 as its only limit point. We say that (Bh)h∈I is a finite-dimensional
approximation of B (or that Bh approximates B, for short) if for every f ∈ B, we
have inffh∈Bh ‖f − fh‖B → 0 as h→ 0.

In all of the following, we assume that (Yh
1 )h∈I , (Yh

2 )h∈I , (Mh
1 )h∈I , and (Mh

2 )h∈I
are finite-dimensional approximations of Y1 := H1(Ω), Y2 := L2(Ω), M1 := L2(Ω)/R,
and M2 := H1(Ω)/R, respectively. This implies, of course, that the product spaces
Yh := Yh

1×Yh
2 and Mh := Mh

1 ×Mh
2 approximate Y := Y1×Y2 and M := M1×M2,

respectively. Recalling that X1 := H1
0(Ω), X2 := Y2, and X := X1 ×X2, we also set

Xh
1 := Yh

1 ∩X1, Xh
2 := Yh

2 , and Xh := Xh
1×Xh

2 . Finally, we let Yh
1,Γ denote the trace

space of Yh
1 , that is, the subspace {vh|Γ; vh ∈ Yh

1} of Y1,Γ := H1/2(Γ). Note that
automatically, (Yh

1,Γ)h∈I is a finite-dimensional approximation of Y1,Γ. However, an

extra condition (see below) will be needed to guarantee that (Xh
1 )h∈I approximates

X1.

Again, we assume a set of parameters η, ρ, σ, µ and a set of data F, E, g, Jext,
Bext to be given as in Problem P0 and let j := Jext ·n. Moreover, we choose a family
(gh)h∈I of approximate boundary values gh ∈ Yh

1,Γ such that gh → g in Y1,Γ as

h→ 0. We then consider a family Ph1 (h ∈ I) of finite-dimensional approximations to
Problem P1, as follows.

Problem Ph1 . Find (uh,Jh) ∈ Yh with uh|Γ = gh and (ph, φh) ∈Mh such that

a0

(
(uh,Jh), (vh,Kh)

)
+ a1

(
(uh,Jh), (uh,Jh), (vh,Kh)

)
(3.1)

+b
(
(vh,Kh), (ph, φh)

)
=

∫
Ω

F · vh +

∫
Ω

E ·Kh ∀ (vh,Kh) ∈ Xh



1314 A. J. MEIR AND PAUL G. SCHMIDT

and

b
(
(uh,Jh), (qh, ψh)

)
=

∫
Γ

j ψh ∀ (qh, ψh) ∈Mh.(3.2)

To prove the well-posedness (for small data) of Problem Ph1 and to establish
optimal-order error estimates in the spirit of the Ladyzhenskaya–Babuska–Brezzi the-
ory (see, for example, [2, 5, 15]), we need to impose two conditions on the finite-
dimensional spaces involved. Our first assumption is that the form b satisfies the
LBB-condition on Xh ×Mh uniformly with respect to h ∈ I.

Assumption A1. There exists a number β > 0 such that

inf
(qh,ψh)∈Mh

sup
(vh,Kh)∈Xh

b
(
(vh,Kh), (qh, ψh)

)
‖(vh,Kh)‖Y‖(qh, ψh)‖M ≥ β ∀h ∈ I.

Our second assumption is needed to deal with the nonhomogeneous essential
boundary condition for the velocity field.

Assumption A2. There exist a number γ > 0 and a family (Πh)h∈I of bounded lin-
ear projections from Y1 onto Yh

1 such that Πh(X1) ⊂ X1 and ‖Πh‖ ≤ γ for allh ∈ I.
Remark 3.1. (a) Note that the uniform boundedness of the projections Πh in

Assumption A2 implies their strong convergence in Y1. Indeed, we have

‖v −Πhv‖Y1
≤ (γ + 1) inf

vh∈Yh
1

‖v − vh‖Y1

for every v ∈ Y1 and h ∈ I.
The crucial property that distinguishes the projections Πh from, say, the orthog-

onal projections of Y1 onto Yh
1 , is that the former preserve homogeneous Dirich-

let boundary values. One immediate consequence of this property is that the spaces
Xh

1 = Yh
1 ∩X1 approximate X1.

Obviously, the spaces Xh ×Mh will then approximate X ×M , and as a con-
sequence, Assumption A1 (the uniform LBB-condition on Xh × Mh) implies that
Lemma 2.2(c) (the LBB-condition on X×M) holds with the same constant β.

(b) Another consequence of AssumptionA2 is the existence of a uniformly bounded
family (Πh

Γ)h∈I of linear projections from Y1,Γ onto Yh
1,Γ (the trace spaces of Y1 and

Yh
1 , respectively). Define Πh

Γ : Y1,Γ → Yh
1,Γ by

Πh
Γk := (ΠhΛk)|Γ,

for k ∈ Y1,Γ and h ∈ I, where Λ denotes, as before, a bounded linear lifting operator
from Y1,Γ into Y1. Since Πh(X1) ⊂ X1, the above definition is actually independent
of the choice of the lifting operator , and this implies that Πh

Γkh = kh for all kh ∈ Yh
1,Γ;

that is, Πh
Γ is indeed a projection. Furthermore, since we can choose Λ so that ‖Λ‖ = 1,

we have ‖Πh
Γ‖ ≤ γ (with the constant γ of Assumption A2) and thus

‖k−Πh
Γk‖Y1,Γ ≤ (γ + 1) inf

kh∈Yh
1,Γ

‖k− kh‖Y1,Γ

for every k ∈ Y1,Γ and h ∈ I. In particular, if k ∈ Y1,Γ and if v ∈ Y1 is any lifting
of k, then

‖k−Πh
Γk‖Y1,Γ

≤ (γ + 1) inf
vh∈Yh

1

‖v − vh‖Y1
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for all h ∈ I.
(c) With reasoning similar to (b), we infer the existence of a uniformly bounded

family (Λh)h∈I of linear lifting operators from Yh
1,Γ into Yh

1 . Indeed, if we define

Λh : Yh
1,Γ → Yh

1 by

Λhkh := ΠhΛkh,

for kh ∈ Yh
1,Γ and h ∈ I, then (Λhkh)|Γ = Πh

Γkh = kh for all kh ∈ Yh
1,Γ, that is, Λh is

a lifting operator, and ‖Λh‖ ≤ γ for allh ∈ I, provided we choose Λ so that ‖Λ‖ = 1.
Moreover, kh → k in Y1,Γ implies that Λhkh → Λk in Y1.

(d) All three of the above remarks will play a role in the subsequent analysis.
We note that finite-dimensional spaces satisfying Assumptions A1 and A2 have been
devised and analyzed in the finite-element literature. Specific examples, relevant in
connection with Problem P1, will be discussed in section 4.

In the same way that we used the operator Λ and the LBB-condition on X×M
to “homogenize” Problem P1 in section 2, we now employ the operators Λh and
Assumption A1 to “homogenize” Problem Ph1 . Define

(uh0 ,J
h
0 ) := (Λhgh, 0) + (Bh)+

(
ϕh(gh, j)

)
,

where (Bh)+ is the Moore–Penrose pseudoinverse of the operator Bh : Xh → (Mh)∗

defined by

Bh(vh,Kh) := b
(
(vh,Kh), (·, ·))∣∣

Mh ,

for (vh,Kh) ∈ Xh, and where ϕh(gh, j) ∈ (Mh)∗ is given by

ϕh(gh, j)(qh, ψh) :=

∫
Γ

j ψh − b((Λhgh, 0), (qh, ψh)
)
,

for (qh, ψh) ∈ Mh. By construction, we have (uh0 ,J
h
0 ) ∈ Yh, uh0 |Γ = gh, and

b
(
(uh0 ,J

h
0 ), (qh, ψh)

)
=
∫

Γ
j ψh for all (qh, ψh) ∈Mh. Moreover,

‖(uh0 ,Jh0 )‖Y ≤ λ‖(gh, j)‖H1/2(Γ)×H−1/2(Γ) ∀ h ∈ I,(3.3)

with a constant λ depending only on Ω and the choice of spaces (Yh)h∈I and (Mh)h∈I
(for example, λ = (1+

√
3β−1)γ, where β and γ are the constants in Assumptions A1

and A2). Inequality (2.6), the corresponding estimate for (u0,J0), as constructed in
section 2, will automatically hold with the same constant λ. It can also be verified
that

gh → g in Y1,Γ =⇒ (uh0 ,J
h
0 )→ (u0,J0) in Y.(3.4)

In essence, the proof of (3.4) amounts to showing that the Moore–Penrose pseudo-
inverses (Bh)+ of the operators Bh converge strongly to the Moore–Penrose pseudo-
inverseB+ of the operatorB. More precisely, (Bh)+(ϕ|Mh)→ B+ϕ for every ϕ ∈M∗.
This is a (not quite trivial) consequence of Assumption A1 and can be established in
the abstract setting of [5, Chapter II.1.1].

Substituting uh = uh0 + ûh and Jh = Jh0 + Ĵh in (3.1) and (3.2), we arrive at the
finite-dimensional analogue of Problem P2.

Problem Ph2 . Find (ûh, Ĵh) ∈ Vh such that

ah
(
(ûh, Ĵh), (ûh, Ĵh), (vh,Kh)

)
= `h(vh,Kh) ∀ (vh,Kh) ∈ Vh.
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Here, the forms ah and `h are defined just like a and ` in (2.7) and (2.8), except
that (uh0 ,J

h
0 ) replaces (u0,J0). The space Vh is the finite-dimensional analogue of V,

as defined in (2.5); that is,

Vh := {(vh,Kh) ∈ Xh; b
(
(vh,Kh), (qh, ψh)

)
= 0 ∀ (qh, ψh) ∈Mh}.

Due to Assumption A1, Problem Ph2 is equivalent to Problem Ph1 in the same way
that Problem P2 is equivalent to Problem P1.

It is readily checked that, although Vh is in general not a subspace of V, the
continuity and coercivity properties of the form a (on V), as stated in Lemma 2.3,
carry over to the form ah (on Vh). In particular, for every (vh0 ,K

h
0 ) ∈ Vh and all

(vh,Kh) ∈ Vh, we have

ah
(
(vh0 ,K

h
0 ), (vh,Kh), (vh,Kh)

) ≥ (α− λ‖a1‖‖(gh, j)‖
)
‖(vh,Kh)‖2Y,

with constants α and λ as in (2.3) and (3.3). This yields an existence and uniqueness
result analogous to Theorem 2.4 for Problem Ph2 .

Theorem 3.2. Let Nh = Nh(F,E,gh,Jext,Bext) denote the norm of the func-
tional `h|Vh . Let ‖(gh, j)‖ denote the norm of (gh, j) in H1/2(Γ)×H−1/2(Γ), where
j = Jext · n, and choose constants α and λ as in (2.3) and (3.3).

(a) If ‖(gh, j)‖ < α
λ‖a1‖ , then there exists at least one solution (ûh, Ĵh) of Prob-

lem Ph2 that satisfies

‖(ûh, Ĵh)‖Y ≤ Nh

α− λ‖a1‖‖(gh, j)‖ .

(b) If ‖(gh, j)‖ < α
λ‖a1‖ and Nh < 1

‖a1‖
(
α − λ‖a1‖‖(gh, j)‖

)2
, then the solution

of Problem Ph2 is unique.
Of course, the remarks following Theorem 2.4 apply accordingly. Furthermore,

(3.4) implies that

Nh(F,E,gh,Jext,Bext)→ N(F,E,g,Jext,Bext);

that is, ‖`h|Vh‖ → ‖`|V‖, as h → 0. Based on these observations, we obtain the
following corollary to Theorems 2.4 and 3.2.

Corollary 3.3. Let N = N(F,E,g,Jext,Bext) denote the norm of the functional
`|V. Let ‖(g, j)‖ denote the norm of (g, j) in H1/2(Γ)×H−1/2(Γ), where j = Jext · n,
and choose constants α and λ as in (2.3) and (3.3).

If ‖(g, j)‖ < α
λ‖a1‖ and N < 1

‖a1‖
(
α − λ‖a1‖‖(g, j)‖

)2
, and if h is suffi-

ciently small, then Problems P1 and Ph1 both have unique solutions (u,J, p, φ)
and (uh,Jh, ph, φh), respectively, and these solutions satisfy ‖(u,J)‖Y < α

‖a1‖ and

‖(uh,Jh)‖Y < α
‖a1‖ .

The central result of this section is an estimate for the discretization error that
arises when, in the case of unique solvability, the solution of Problem P1 is approxi-
mated by that of Ph1 .

Theorem 3.4. Let the constants α, β, and γ be chosen as in Lemma 2.2(b),
Assumption A1, and Assumption A2. Suppose (u,J, p, φ) and (uh,Jh, ph, φh) are
solutions of Problems P1 and Ph1 , respectively. Define ν := ‖(u,J)‖Y and νh :=
‖(uh,Jh)‖Y, and assume that ν < α

‖a1‖ . Finally, let

θh := sup
(vh,Kh)∈Vh

‖(vh,Kh)‖Y=1

inf
(v,K)∈V

‖(vh,Kh)− (v,K)‖Y.
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Then we have

‖(u,J)− (uh,Jh)‖Y ≤
(

1 +
‖a0‖+ (ν + νh)‖a1‖

α− ν‖a1‖
)(

1 +
‖b‖
β

)
(

(1 + γ) inf
(vh,Kh)∈Yh

‖(u,J)− (vh,Kh)‖Y + γ‖g − gh‖Y1,Γ

)
+

θh‖b‖
α− ν‖a1‖ inf

(qh,ψh)∈Mh
‖(p, φ)− (qh, ψh)‖M

and

‖(p, φ)− (ph, φh)‖M ≤ ‖a0‖+ (ν + νh)‖a1‖
β

‖(u,J)− (uh,Jh)‖Y

+

(
1 +
‖b‖
β

)
inf

(qh,ψh)∈Mh
‖(p, φ)− (qh, ψh)‖M .

Remark 3.5. The quantity θh measures the “angle” between the spaces Vh and
V. In fact, θh = 0 if and only if Vh ⊂ V. In any case, we have 0 ≤ θh ≤ 1 and

inf
(v,K)∈V

‖(vh,Kh)− (v,K)‖Y ≤ θh‖(vh,Kh)‖Y ∀ (vh,Kh) ∈ Vh.

Before turning to the proof of Theorem 3.4, we state a simple corollary.
Corollary 3.6. In the situation of Corollary 3.3, let the unique solutions of

Problems P1 and Ph1 be denoted by (u,J, p, φ) and (uh,Jh, ph, φh), respectively. Then
there exists a number δ > 0 such that the following estimate holds for all sufficiently
small h ∈ I:

‖(u,J)− (uh,Jh)‖Y + ‖(p, φ)− (ph, φh)‖M
≤ δ

(
inf

(vh,Kh)∈Yh
‖(u,J)− (vh,Kh)‖Y

+ inf
(qh,ψh)∈Mh

‖(p, φ)− (qh, ψh)‖M + ‖g − gh‖Y1,Γ

)
.

(3.5)

In particular, (uh,Jh)→ (u,J) in Y and (ph, φh)→ (p, φ) in M, as h→ 0.
Proof. Under the stated assumptions, we have

ν = ‖(u,J)‖Y <
α

‖a1‖ and νh = ‖(uh,Jh)‖Y <
α

‖a1‖ .

Also, by Remark 3.5, θh ≤ 1. Using these bounds and the two estimates of Theo-
rem 3.4, we obtain (3.5) with, for example,

δ :=
(
1 + γ

)(
1 +

2α+ ‖a0‖
β

)(
1 +

2α+ ‖a0‖
α− ν‖a1‖

)(
1 +
‖b‖
β

+
‖b‖

α− ν‖a1‖
)
.

Convergence follows immediately, thanks to the approximation properties of (Yh)h∈I
and (Mh)h∈I and the assumption that ‖g − gh‖Y1,Γ → 0 as h→ 0.

The estimate (3.5) is of optimal order in the sense that it shows the total dis-
cretization error ‖(u,J)− (uh,Jh)‖Y + ‖(p, φ)− (ph, φh)‖M to be proportional to the
sum of the errors of best approximation of (u,J) and (p, φ) by elements of Yh and
Mh, respectively, and of the error in the approximate boundary values gh. Thus,
we can obtain specific rates of convergence by employing finite-dimensional spaces
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Yh and Mh with suitable approximation properties and by choosing sufficiently good
approximate boundary values. Note that it is always possible to choose gh so that
‖g−gh‖Y1,Γ

is of the same order as infvh∈Yh
1
‖u−vh‖Y1 . As will be seen in section 4,

the projections Πh
Γ of Remark 3.1(b) provide a numerically feasible way of doing this.

We now turn to the proof of Theorem 3.4. Throughout, we assume that all
hypotheses of the theorem are satisfied.

First, we observe that (u,J, p, φ) and (uh,Jh, ph, φh) satisfy (2.1) and (3.1), re-
spectively. Using the same test functions (vh,Kh) ∈ Xh in both equations, subtract-
ing the latter from the former, and regrouping the trilinear terms, we obtain

0 = a0

(
(u− uh,J− Jh), (vh,Kh)

)
+ a1

(
(u− uh,J− Jh), (u,J), (vh,Kh)

)
+ a1

(
(uh,Jh), (u− uh,J− Jh), (vh,Kh)

)
+ b
(
(vh,Kh), (p− ph, φ− φh)

)
.

(3.6)

Now let (wh,Lh) ∈ Yh, (rh, χh) ∈Mh, and (vh,Kh) ∈ Xh. Then we have

a0

(
(wh − uh,Lh − Jh), (vh,Kh)

)
+ a1

(
(wh − uh,Lh − Jh), (u,J), (vh,Kh)

)
+ a1

(
(uh,Jh), (wh − uh,Lh − Jh), (vh,Kh)

)
+ b
(
(vh,Kh), (rh − ph, χh − φh)

)
= a0

(
(wh − u,Lh − J), (vh,Kh)

)
+ a1

(
(wh − u,Lh − J), (u,J), (vh,Kh)

)
+ a1

(
(uh,Jh), (wh − u,Lh − J), (vh,Kh)

)
+ b
(
(vh,Kh), (rh − p, χh − φ)

)
.

(3.7)

(Note that the difference of the left- and right-hand sides of (3.7) equals the right-
hand side of (3.6).) Equations (3.6) and (3.7) will be used repeatedly in the following
estimates. We proceed in several steps.

Step 1.

‖(u,J)− (uh,Jh)‖Y
≤
(

1 +
‖a0‖+ (ν + νh)‖a1‖

α− ν‖a1‖
)

inf
(wh,Lh)∈Yh

(wh,Lh)−(uh,Jh)∈Vh

‖(u,J)− (wh,Lh)‖Y

+
θh‖b‖

α− ν‖a1‖ inf
(rh,χh)∈Mh

‖(p, φ)− (rh, χh)‖M .

(3.8)

Proof. Let (wh,Lh) ∈ Yh be such that (wh,Lh) − (uh,Jh) ∈ Vh (which
means that wh|Γ = uh|Γ = gh and b

(
(wh,Lh), (qh, ψh)

)
= b

(
(uh,Jh), (qh, ψh)

)
=∫

Γ
j ψh for all (qh, ψh) ∈ Mh). Also, let (rh, χh) ∈ Mh and (w,L) ∈ V. Using

(vh,Kh) := (wh − uh,Lh − Jh) as a test function in (3.7), we obtain

a0

(
(wh − uh,Lh − Jh), (wh − uh,Lh − Jh)

)
+ a1

(
(wh − uh,Lh − Jh), (u,J), (wh − uh,Lh − Jh)

)
= a0

(
(wh − u,Lh − J), (wh − uh,Lh − Jh)

)
+ a1

(
(wh − u,Lh − J), (u,J), (wh − uh,Lh − Jh)

)
+ a1

(
(uh,Jh), (wh − u,Lh − J), (wh − uh,Lh − Jh)

)
+ b
(
(wh − uh −w,Lh − Jh − L), (rh − p, χh − φ)

)
.

(3.9)

(Note that the third and fourth terms on the left-hand side of (3.7) vanish by the
skew-symmetry of a1

(
(uh,Jh), (·, ·), (·, ·)) and by definition of Vh, respectively, and
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that b
(
(w,L), (rh−p, χh−φ)

)
= 0 by definition of V.) Thanks to (2.3), the left-hand

side of (3.9) is bounded from below by(
α− ν‖a1‖

)‖(wh,Lh)− (uh,Jh)‖2Y
(where ν = ‖(u,J)‖Y). The right-hand side of (3.9) can be estimated from above by(‖a0‖+ (ν + νh)‖a1‖

)‖(wh,Lh)− (u,J)‖Y ‖(wh,Lh)− (uh,Jh)‖Y
+‖b‖‖(wh,Lh)− (uh,Jh)− (w,L)‖Y ‖(rh, χh)− (p, φ)‖M

(where νh = ‖(uh,Jh)‖Y) and, taking the infimum over (w,L) ∈ V, by((‖a0‖+ (ν + νh)‖a1‖
)‖(wh,Lh)− (u,J)‖Y + θh‖b‖‖(rh, χh)− (p, φ)‖M

)
‖(wh,Lh)− (uh,Jh)‖Y

(see Remark 3.5). Hence,(
α− ν‖a1‖

)‖(wh,Lh)− (uh,Jh)‖Y
≤ (‖a0‖+ (ν + νh)‖a1‖

)‖(wh,Lh)− (u,J)‖Y + θh‖b‖‖(rh, χh)− (p, φ)‖M .
Using the triangle inequality and recalling that by assumption ν < α/‖a1‖, we con-
clude that

‖(u,J)− (uh,Jh)‖Y ≤ ‖(u,J)− (wh,Lh)‖Y + ‖(wh,Lh)− (uh,Jh)‖Y
≤
(

1 +
‖a0‖+ (ν + νh)‖a1‖

α− ν‖a1‖
)
‖(u,J)− (wh,Lh)‖Y

+
θh‖b‖

α− ν‖a1‖ ‖(p, φ)− (rh, χh)‖M ,

which implies (3.8).
Step 2.

inf
(wh,Lh)∈Yh

(wh,Lh)−(uh,Jh)∈Vh

‖(u,J)− (wh,Lh)‖Y

≤
(

1 +
‖b‖
β

)
inf

(vh,Kh)∈Yh

(vh,Kh)−(uh,Jh)∈Xh

‖(u,J)− (vh,Kh)‖Y.
(3.10)

Proof. Let (vh,Kh) ∈ Yh be such that (vh,Kh)− (uh,Jh) ∈ Xh (that is, vh|Γ =
uh|Γ = gh). Define (wh,Lh) := (vh,Kh) + (Bh)+

(
b
(
(u−vh,J−Kh), (·, ·))|Mh

)
(see

the discussion preceding Problem Ph2 for the definition of Bh and (Bh)+). Then we
have (wh,Lh) ∈ Yh, wh|Γ = gh, and

b
(
(wh,Lh), (qh, ψh)

)
= b
(
(vh,Kh), (qh, ψh)

)
+ b
(
(u− vh,J−Kh), (qh, ψh)

)
= b
(
(u,J), (qh, ψh)

)
=

∫
Γ

j ψh = b
(
(uh,Jh), (qh, ψh)

)
for all (qh, ψh) ∈Mh; that is, (wh,Lh)− (uh,Jh) ∈ Vh. Moreover,

‖(wh,Lh)− (vh,Kh)‖Y ≤ ‖b‖
β
‖(u,J)− (vh,Kh)‖Y
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and thus

‖(u,J)− (wh,Lh)‖Y ≤ ‖(u,J)− (vh,Kh)‖Y + ‖(vh,Kh)− (wh,Lh)‖Y
≤
(

1 +
‖b‖
β

)
‖(u,J)− (vh,Kh)‖Y.

The estimate (3.10) follows by taking infima.
Step 3.

inf
(vh,Kh)∈Yh

(vh,Kh)−(uh,Jh)∈Xh

‖(u,J)− (vh,Kh)‖Y

≤ (1 + γ) inf
(wh,Lh)∈Yh

‖(u,J)− (wh,Lh)‖Y + γ‖g − gh‖Y1,Γ
.

(3.11)

Proof. Let (wh,Lh) ∈ Yh. Then define vh := wh + Λh(gh − wh|Γ), where
Λh : Yh

1,Γ → Yh
1 denotes the lifting operator of Remark 3.1(c), and let Kh := Lh.

Clearly, vh|Γ = gh and thus, (vh,Kh)− (uh,Jh) ∈ Xh. Moreover,

‖(u,J)− (vh,Kh)‖Y ≤ ‖(u,J)− (wh,Lh)‖Y + ‖(Λh(gh −wh|Γ), 0)‖Y
≤ ‖(u,J)− (wh,Lh)‖Y + γ‖gh −wh|Γ‖Y1,Γ

and

‖gh −wh|Γ‖Y1,Γ ≤ ‖gh − g‖Y1,Γ + ‖g −wh|Γ‖Y1,Γ

≤ ‖gh − g‖Y1,Γ
+ ‖u−wh‖Y1

(since g = u|Γ). This implies

‖(u,J)− (vh,Kh)‖Y ≤ (1 + γ)‖(u,J)− (wh,Lh)‖Y + γ‖g − gh‖Y1,Γ
,

from which (3.11) follows by taking infima.
Step 4.

‖(u,J)− (uh,Jh)‖Y
≤
(

1 +
‖a0‖+ (ν + νh)‖a1‖

α− ν‖a1‖
)(

1 +
‖b‖
β

)
(

(1 + γ) inf
(wh,Lh)∈Yh

‖(u,J)− (wh,Lh)‖Y + γ‖g − gh‖Y1,Γ

)
+

θh‖b‖
α− ν‖a1‖ inf

(rh,χh)∈Mh
‖(p, φ)− (rh, χh)‖M .

(3.12)

Proof. Combine the estimates in Steps 1–3.
Step 5.

‖(p, φ)− (ph, φh)‖M ≤ ‖a0‖+ (ν + νh)‖a1‖
β

‖(u,J)− (uh,Jh)‖Y

+

(
1 +
‖b‖
β

)
inf

(rh,χh)∈Mh
‖(p, φ)− (rh, χh)‖M .

(3.13)

Proof. Let (rh, χh) ∈Mh. Recalling (3.6), we see that for all (vh,Kh) ∈ Xh, we
have



MHD FLOW WITH NONIDEAL BOUNDARY 1321

b
(
(vh,Kh), (rh − ph, χh − φh)

)
= b
(
(vh,Kh), (rh − p, χh − φ)

)
+ b
(
(vh,Kh), (p− ph, φ− φh)

)
= b
(
(vh,Kh), (rh − p, χh − φ)

)− a0

(
(u− uh,J− Jh), (vh,Kh)

)
− a1

(
(u− uh,J− Jh), (u,J), (vh,Kh)

)
− a1

(
(uh,Jh), (u− uh,J− Jh), (vh,Kh)

)
≤
(
‖b‖ ‖(rh, χh)− (p, φ)‖M

+
(‖a0‖+ (ν + νh)‖a1‖

)‖(u,J)− (uh,Jh)‖Y
)
‖(vh,Kh)‖Y

and thus

sup
(vh,Kh)∈Xh

b
(
(vh,Kh), (rh − ph, χh − φh)

)
‖(vh,Kh)‖Y

≤ ‖b‖ ‖(rh, χh)− (p, φ)‖M +
(‖a0‖+ (ν + νh)‖a1‖

)‖(u,J)− (uh,Jh)‖Y.

By Assumption A1, the supremum on the left-hand side is bounded from below
by β ‖(rh, χh)− (ph, φh)‖M , and it follows that

‖(rh, χh)− (ph, φh)‖M
≤ ‖b‖

β
‖(rh, χh)− (p, φ)‖M +

‖a0‖+ (ν + νh)‖a1‖
β

‖(u,J)− (uh,Jh)‖Y.

This implies

‖(p, φ)− (ph, φh)‖M ≤ ‖(p, φ)− (rh, χh)‖M + ‖(rh, χh)− (ph, φh)‖M
≤ ‖a0‖+ (ν + νh)‖a1‖

β
‖(u,J)− (uh,Jh)‖Y +

(
1 +
‖b‖
β

)
‖(p, φ)− (rh, χh)‖M

and hence the estimate (3.13).
With (3.12) and (3.13), the assertions of Theorem 3.4 are proved.

4. Implementation and numerical experiments. Here we describe a simple
iteration scheme for the solution of Problem Ph1 and possible choices for finite-element
spaces and approximate boundary values. We also discuss expected convergence rates
and illustrate the performance of our method with numerical experiments.

4.1. Iteration scheme. Several iterative methods suggest themselves naturally
for the numerical solution of Problem Ph1 . The following scheme is simple and efficient.

Given (uh0 ,J
h
0 ) ∈ Yh with uh0 |Γ = gh, for n ∈ N find (uhn,J

h
n) ∈ Yh with uhn|Γ =

gh and (phn, φ
h
n) ∈Mh such that

a0

(
(uhn,J

h
n), (vh,Kh)

)
+ a1

(
(uhn−1,J

h
n−1), (uhn,J

h
n), (vh,Kh)

)
+ b
(
(vh,Kh), (phn, φ

h
n)
)

=

∫
Ω

F · vh +

∫
Ω

E ·Kh ∀ (vh,Kh) ∈ Xh
(4.1)

and

b
(
(uhn,J

h
n), (qh, ψh)

)
=

∫
Γ

j ψh ∀ (qh, ψh) ∈Mh.(4.2)
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It is a routine exercise to prove that this iteration scheme is well posed for every
initial guess (uh0 ,J

h
0 ). Moreover, if (uh,Jh, ph, φh) is a solution of Problem Ph1 and if

(uhn,J
h
n, p

h
n, φ

h
n) is a sequence of iterates satisfying (4.1) and (4.2), then

‖(uh,Jh)− (uhn,J
h
n)‖Y ≤ νh‖a1‖

α
‖(uh,Jh)− (uhn−1,J

h
n−1)‖Y

and

‖(ph, φh)− (phn, φ
h
n)‖M ≤

α+ ‖a0‖+ νhn−1‖a1‖
β

νh‖a1‖
α

‖(uh,Jh)− (uhn−1,J
h
n−1)‖Y

for all n ∈ N, where νh := ‖(uh,Jh)‖Y, νhn−1 := ‖(uhn−1,J
h
n−1)‖Y, and α and β are the

constants of Lemma 2.2(b) and Assumption A1. In the situation of Theorem 3.2(b),
that is, if Problem Ph1 has a (necessarily unique) solution (uh,Jh, ph, φh) with νh =
‖(uh,Jh)‖Y < α/‖a1‖, we infer the convergence of the iteration scheme, along with
the usual a priori and a posteriori error estimates. In fact, we have

‖(uh,Jh)− (uhn,J
h
n)‖Y ≤ λh

1− λh ‖(u
h
n,J

h
n)− (uhn−1,J

h
n−1)‖Y

and

‖(uh,Jh)− (uhn,J
h
n)‖Y ≤ (λh)n

1− λh ‖(u
h
1 ,J

h
1 )− (uh0 ,J

h
0 )‖Y

for all n ∈ N, where

λh :=
νh‖a1‖
α

< 1.

A question we need to address at this point is whether the nonlocal operators B
and P intervening in the definition of the forms a1 and b (see the beginning of section 2)
will adversely affect the sparsity of the matrix associated with the linear equations
(4.1) and (4.2)—assuming, of course, that basis functions with small support are used
to span the spaces Yh and Mh. Fortunately, there is no problem: the operator B does
not affect the sparsity at all since we are lagging the first argument of the trilinear
form a1, and the projection P can be eliminated by rewriting (4.2) in the form

b0
(
(uhn,J

h
n), (qh, ψh)

)
=

∫
Γ

j ψh − 1

|Ω|
(∫

Γ

gh · n
)(∫

Ω

qh
)

∀ (qh, ψh) ∈Mh,

where b0 is defined just like b except for the omission of the projection P. (Recall
Remark 2.1(c), and note that P intervenes only in (4.2) and only if the approximate
boundary values gh do not satisfy the condition

∫
Γ

gh · n = 0.)

4.2. Finite-element spaces. The error estimate (3.5) and classical approxi-
mation theory of finite-element spaces suggest that Problem Ph1 will be a kth order
approximation of Problem P1 (for some k ∈ N) if we use appropriate piecewise polyno-
mial approximations of degree k for the velocity and electric potential, and of degree
k − 1 for the pressure and current density. Since the convergence and error analysis
in section 3 is partially based on Assumption A1 (the uniform LBB-condition), the
velocity-pressure pairs (Xh

1 ,M
h
1 ) and the current-potential pairs (Xh

2 ,M
h
2 ) should be

chosen so that the inf-sup conditions

inf
qh∈Mh

1

sup
vh∈Xh

1

∫
Ω

(∇ · vh)qh

‖vh‖X1‖qh‖M1

≥ β1 ∀h ∈ I(4.3)
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and

inf
ψh∈Mh

2

sup
Kh∈Xh

2

∫
Ω

Kh · (∇ψh)

‖Kh‖X2
‖ψh‖M2

≥ β2 ∀h ∈ I(4.4)

hold with positive constants β1 and β2, respectively; Assumption A1 would then be
satisfied with β = min{β1, β2}.

The condition (4.3) is familiar from the theory of the Stokes and Navier–Stokes
equations; it severely limits the choices for (Xh

1 ,M
h
1 ), but by now many suitable pairs

of spaces are known. Assuming, for simplicity, that the domain Ω is a polyhedron and
that we are given a regular family of finite-element decompositions of Ω into simplicial
or rectangular elements, we may approximate H1(Ω) and L2(Ω) by the spaces Qh and
Lh of continuous piecewise quadratics (or triquadratics) and continuous piecewise
linears (or trilinears) on tetrahedra (or rectangular parallelepipeds), respectively, and
then set Yh

1 := (Qh)3, Xh
1 := Yh

1 ∩X1 = (Qh ∩H1
0 (Ω))3, and Mh

1 := Lh/R. These
so-called Taylor–Hood-type velocity-pressure pairs are widely used in computational
fluid dynamics and well understood (see, for example, [2, Chapter VI.6], [6, Chapter
3]), or [22, 23]); in particular, they satisfy the inf-sup condition (4.3) under mild
assumptions on the geometry of the underlying triangulations.

Fortunately, the spaces Yh
1 , as defined above, do satisfy the second crucial hy-

pothesis of section 3, namely, Assumption A2. This is a by-product of the work of
Scott and Zhang [18], who constructed generalized interpolants in spaces of contin-
uous piecewise polynomials (associated with regular triangulations of polyhedral do-
mains) that exhibit optimal approximation properties while preserving homogeneous
Dirichlet boundary values. In particular, these interpolants are uniformly bounded
projections from H1(Ω) onto Qh that leave H1

0 (Ω) invariant—as required in Assump-
tion A2. (The construction in [18] is based on simplicial triangulations but carries
over, mutatis mutandis, to the case of rectangular elements.)

The inf-sup condition (4.4) for the current-potential pairs (Xh
2 ,M

h
2 ) is trivially

satisfied whenever Xh
2 contains the gradients of the functions in Mh

2 . In view of
our choices for the velocity-pressure pairs, it is natural to set Mh

2 := Qh/R. The
space Xh

2 should then contain the gradients of all continuous piecewise quadratics
(on tetrahedra) or triquadratics (on rectangular parallelepipeds). Thus, in the case
of a simplicial triangulation, we choose for Xh

2 the subspace of L2(Ω) comprised of
all vector functions on Ω whose components are (generally discontinuous) piecewise
linears. When using rectangular elements, we let Xh

2 := Xh
2,1 × Xh

2,2 × Xh
2,3 and

choose for Xh
2,i the tensor product of the space of (generally discontinuous) piecewise

linears in the ith variable and the space of continuous piecewise biquadratics in the
remaining two variables. Note that in any case, Xh

2 ⊃ (Lh)3. Although the inf-sup
condition (4.4) arises naturally in connection with so-called primal mixed methods
(see, for example, [15, Section 12]), it seems that not very many suitable pairs of
spaces (Xh

2 ,M
h
2 ) have been devised.

We mention that the quotient spaces Mh
1 = Lh/R and Mh

2 = Qh/R are most
easily realized by dropping one basis function each from Lh and Qh (which amounts
to setting the pressure and electric potential equal to zero at one node each of the
triangulation). For purposes of error analysis, however, the computed pressures and
electric potentials should be normalized, in a postprocessing step, to have mean zero
on Ω.

All the preceding observations can be generalized to allow for regular decompo-
sitions of Ω into convex hexahedra (instead of rectangular parallelepipeds) or even
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more general isoparametric elements (if Ω is not a polyhedron). However, the fact
that the local basis functions are then isoparametric images of polynomials on a refer-
ence element (rather than genuine polynomials) necessitates some care in the choice
of Xh

2 (see [15, Remark 2.4]).

4.3. Approximate boundary data. In order for Problem Ph1 to be a viable
approximation of Problem P1, we need to choose approximations gh ∈ Yh

1,Γ for the

boundary values g of the fluid velocity such that ‖g−gh‖Y1,Γ → 0 as h→ 0. In view
of the error estimate (3.5), the choice of gh would be optimal if

‖g − gh‖Y1,Γ
= O

(
inf

vh∈Yh
1

‖u− vh‖Y1

)
as h→ 0,(4.5)

where u is the velocity component of the solution of Problem P1.
Recall that it is not necessary to enforce the compatibility condition

∫
Γ

gh ·n = 0.

If g is continuous, we can simply work with the Lagrange interpolant of g in Yh
1,Γ,

although in general this choice will fail to be optimal in the sense of (4.5) unless g
is sufficiently smooth. An optimal choice, feasible for arbitrary g ∈ Y1,Γ, is to let
gh := Πh

Γg, where Πh
Γ is the projection operator of Remark 3.1(b). With our choice

of finite-element spaces, where the operators Πh of Assumption A2 are Scott–Zhang-
type interpolants, the operators Πh

Γ are locally defined boundary interpolants and
thus, easy to compute (see [18, Section 5]).

4.4. Predicted convergence rates. Our error estimate (3.5) and standard
results of approximation theory for finite-element spaces (which can be found, for ex-
ample, in [3]), imply that with the above choices of finite elements and approximate
boundary values, Problem Ph1 is a second-order approximation of Problem P1. Specifi-
cally, if the assumptions of Corollary 3.3 are satisfied, if (u,J, p, φ) and (uh,Jh, ph, φh)
denote the (unique) solutions of Problems P1 and Ph1 , respectively, and if (u,J, p, φ)
belongs to the space Hs+1(Ω)×Hs(Ω)×Hs(Ω)×Hs+1(Ω) for some s ∈ [0, 2], then

‖(u,J)− (uh,Jh)‖Y + ‖(p, φ)− (ph, φh)‖M = O(hs) as h→ 0.

4.5. Numerical experiments. We implemented the method, as described, on
the unit cube, Ω = (0, 1)3. Following the preceding general remarks about suitable
finite-element spaces, we decomposed Ω into cubes of equal size and used standard
triquadratic Lagrange elements for the velocity and electric potential, standard trilin-
ear Lagrange elements for the pressure. For the ith component of the current density,
we chose Hermite elements with 9 nodes, namely, those nodes of the principal lattice
of degree two that are not on faces perpendicular to the ith coordinate axis; two
degrees of freedom were associated with each such node a, namely, f 7→ f(a) and
f 7→ ∂if(a). (Recall that the space Xh

2,i should be the tensor product of the space of
generally discontinuous piecewise linears in the ith variable and the space of continu-
ous piecewise biquadratics in the remaining two variables. Instead of the above 9-node
Hermite elements, we could, of course, use 18-node Lagrange elements to construct a
basis for this space, but we would then be unable to utilize the same nodes as for the
velocity, pressure, and potential.) For simplicity, Lagrange interpolation was used to
approximate the boundary values of the fluid velocity.

We solved Problem Ph1 with the iterative method described at the beginning of this
section. The procedure was stopped once the distance (in Y×M) between consecutive
iterates dropped below a given tolerance (10−8 in the experiments below). Stiffness
matrices and load vectors were computed with a 27-point Gaussian quadrature rule
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Table 4.1

h H1-error in u L2-error in J L2-error in p H1-error in φ

H1-rate in u L2-rate in J L2-rate in p H1-rate in φ

1
3

0.1065E-00 0.4510E-01 0.5954E-02 0.5712E-01

2.00 1.98 2.62 1.98

1
4

0.5996E-01 0.2549E-01 0.2806E-02 0.3230E-01

2.00 1.99 2.42 1.99

1
5

0.3839E-01 0.1635E-01 0.1637E-02 0.2072E-01

2.00 1.99 2.29 2.00
1
6

0.2667E-01 0.1137E-01 0.1078E-02 0.1440E-01

on the reference element. In each iteration and at each node, the Biot–Savart formula
(1.5), with J replaced by the approximate current density from the previous iteration,
was numerically evaluated with 8-point Gaussian quadrature rules, avoiding the weak
singularity of the integral. The sparse linear systems resulting from (4.1) and (4.2)
were solved directly, using a standard linear-algebra package.

To test the predicted quadratic convergence of our method, we contrived a simple
(albeit unphysical) example, where an exact solution of Problem P0 is given by

u(x, y, z) := −π cos(πx) exp(−s)t,
J(x, y, z) := 2 sin(πx)(1− s) exp(−s)i + π cos(πx) exp(−s)r,

p(x, y, z) := −1

2
sin2(πx) s exp(−2s),

φ(x, y, z) :=
2

π
cos(πx),

with i := (1, 0, 0), r := (0, y − 1
2 , z − 1

2 ), t := (0, 1
2 − z, y − 1

2 ), and s := |r|2. The
associated magnetic field is

B(x, y, z) := i + sin(πx) exp(−s)t.
Since u and B are divergence-free and ∇×B = J, the above is indeed a smooth

solution of Problem P0 provided that the parameters η, ρ, σ, and µ are all unity and
the data F, E, g, Jext, and Bext are chosen in the obvious way, namely,

F := −∆u + (u · ∇)u +∇p− J×B,

E := J +∇φ− u×B,

and

g := u|Γ, Jext := J|R3\Ω, Bext := i.

The magnetic field induced by Jext can be obtained as B−Bext −B(J|Ω) (instead of
integrating the Biot–Savart formula over R3 \ Ω).

We computed four approximations (uhi ,Jhi , phi , φhi) of (u,J, p, φ), using rather
coarse grids with 27 (h0 = 1

3 ), 64 (h1 = 1
4 ), 125 (h2 = 1

5 ), and 216 (h3 = 1
6 ) elements,

respectively. (This corresponds to 2318, 4985, 9170, and 15215 degrees of freedom,
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Fig. 4.1. Fluid region and external conductor.

respectively, not counting the magnetic field.) Table 4.1 shows the discretization errors

ei and the convergence rates si := ln( ei−1

ei
)/ ln(hi−1

hi
). Despite the coarseness of the

grids, the rates si are found to be in good agreement with the predicted asymptotic
rate, s = 2 (except for the initially faster-than-predicted convergence in the pressure).

As a somewhat less contrived model problem, consider a fluid in Ω, driven by a
uniform, externally generated current Jext that enters and leaves the fluid through
electrodes attached to two opposite faces of the cube; the current loop is closed via
an external conductor of uniform, rectangular cross section (see Figure 4.1). In the
absence of any other driving mechanisms, we have F = 0, E = 0, g = 0, and Bext = 0.
Let |Jext| = 100, and assume, for simplicity, that the parameters η, ρ, σ, and µ are
all unity. Figures 4.2–4.5 depict the approximate current density, electric potential,
velocity, and pressure fields, as computed on a grid of 125 cubic elements. The
magnetic field induced by Jext was obtained by numerically integrating the Biot–
Savart formula over the external conductor.

As expected, all the fields are symmetric about the plane x = 1
2 . The current

and potential fields are also fairly symmetric about the plane y = 1
2 , but not so the

velocity and pressure fields. Their pronounced asymmetry is due to the magnetic
field generated by the current in the external conductor. To reveal this effect more
clearly, we repeated the computation, but this time suppressing the magnetic field
contribution from the external current. Figures 4.6 and 4.7 show the resulting veloc-
ity and pressure fields, now perfectly symmetric about the plane y = 1

2 . A comparison
of Figures 4.4 and 4.6, which use the same scale, and of Figures 4.5 and 4.7 reveals
yet another effect: the presence of the externally generated magnetic field greatly
magnifies the fluid motion and pressure gradients (by way of increasing the Lorentz
forces). To substantiate this observation, we performed a third computation, adding
a uniform magnetic field Bext, downward-pointing, of magnitude |Bext| = 10, to the
fields induced by J and Jext. In the fluid region, this additional magnetic field rein-
forces the one induced by Jext. The ensuing velocity and pressure fields are depicted
in Figures 4.8 and 4.9; the scale in Figure 4.8 is the same as that in Figures 4.4 and
4.6. This experiment, although of limited physical relevance, underscores one of the
main points of our analysis: that even in the simplest MHD flow problems, it is criti-
cally important to account for the fluid’s electromagnetic interaction with the outside
world.
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Fig. 4.2. Current density.
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Fig. 4.3. Electric potential.

Despite their limited scope and somewhat academic nature, the above experi-
ments allow the conclusion that our method and implementation work adequately
and efficiently. The simple iteration scheme that was employed required between five
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Fig. 4.4. Velocity.
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Fig. 4.5. Pressure.

and ten iterations to achieve the desired accuracy (that is, a distance in Y×M of less
than 10−8 between consecutive iterates). Of course, global convergence of the scheme
is guaranteed only under a small-data assumption, and it is exceedingly difficult to
pinpoint “how small is small enough” (our a priori estimates are clearly quite pes-
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Fig. 4.6. Velocity (magnetic field of external current neglected).
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Fig. 4.7. Pressure (magnetic field of external current neglected).

simistic). In the experiments, data and parameters were roughly of order one (some
data even larger), and no convergence problems were encountered. Obvious limita-
tions of our method arise from the expected instability of steady flow in the case of
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Fig. 4.8. Velocity (with additional applied magnetic field).
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Fig. 4.9. Pressure (with additional applied magnetic field).

high Reynolds (and/or magnetic Reynolds) numbers.

In terms of speed, the present implementation leaves much room for improvement,
for example, through the use of iterative (rather than direct) solvers or multilevel
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methods. Also, the expensive computation of the induced magnetic field via evaluation
of the Biot–Savart integral (1.5) could be speeded up by exploiting fast multiple
or multilevel methods. A viable alternative to integrating the Biot–Savart formula
may be to solve the div-curl system (1.7), for example, using a variational approach.
Furthermore, it may be possible to devise more convenient pairs of finite-element
spaces for the current density and electric potential. The pair presently employed
satisfies the crucial LBB-condition (4.4) almost by definition but necessitates the use
of somewhat nonstandard elements for the current density. Finally, parts of the code
are inherently parallelizable—a feature that would have to be exploited in order to
deal with industrial-strength applications. These issues, along with various extensions
of our method, systematic performance tests of the numerical implementation, and
more physically rooted computer experiments are the subject of ongoing research and
will be discussed elsewhere.
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